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PETROLEUM-RESOURCE APPRAISAL AND DISCOVERY RATE
FORECASTING IN PARTIALLY EXPLORED REGIONS 

AN APPLICATION TO THE DENVER BASIN

By L. J. DREW, J. H. SCHUENEMEYER, and D. H. ROOT

ABSTRACT

A model of the discovery process can be used to predict the size 
distribution of future petroleum discoveries in partially explored 
basins. The parameters of the model are estimated directly from the 
historical drilling record, rather than being determined by assump­ 
tions or analogies. The model is based on the concept of the area of 
influence of a drill hole, which states that the area of a basin 
exhausted by a drill hole varies with the size and shape of targets in 
the basin and with the density of previously drilled wells. It also uses 
the concept of discovery efficiency, which measures the rate of dis­ 
covery within several classes of deposit size. The model was tested 
using 25 years of historical exploration data (1949-74) from the 
Denver basin. Prom the trend in the discovery rate (the number of 
discoveries per unit area exhausted), the discovery efficiencies in 
each class of deposit size were estimated. Using pre-1956 discovery 
and drilling data, the model accurately predicted the size distribu­ 
tion of discoveries for the 1956-74 period.

INTRODUCTION

Before the cost of petroleum obtained from future 
discoveries can be determined, a model of the discovery 
process must be used to predict not only the total vol­ 
ume of petroleum to be discovered with any given level 
of exploratory drilling but also the size distribution of 
these discoveries. This detailed information is required 
because, as the discovery process proceeds, the incre­ 
mental size distribution of discoveries progressively 
contains a higher percentage of smaller deposits. Cost 
rises not only because progressively smaller volumes of 
petroleum are found per unit of exploratory effort but 
also because smaller deposits usually have higher per 
unit development costs.

The purpose of this investigation was to develop a 
model of the discovery process that will predict the in­ 
cremental size distribution of future discoveries in any 
partially explored region as a function of exploratory 
drilling effort. In the construction of this model, a 
structure was specified whose parameters can be esti­ 
mated directly from historical drilling and discovery 
data rather than by subjective judgment or the use of 
an analogy. The number of discoveries predicted in 
each size class is determined by the value of two pa­

rameters. The first parameter, which is commonly es­ 
timated for all size classes, is the effective basin area, 
which is that region within which drillers are willing 
to site wells. The second parameter, which is uniquely 
estimated for each size class, is the discovery efficiency 
parameter. This parameter measures the effectiveness 
of exploratory drilling relative to the outcome of a ran­ 
dom search process. The higher the value of the discov­ 
ery efficiency parameter in any given size class, the 
earlier most of the deposits in that class will be discov­ 
ered.

The model of the discovery process described in this 
report is related to the model proposed by Arps and 
Roberts (1958) but differs in several significant as­ 
pects. First, the discovery efficiencies are estimated 
within each deposit size class rather than assumed to 
be a single efficiency for all size classes as determined 
by subjective judgment. Second, the effective basin 
area is estimated from discovery time series data, in 
contrast to the approach taken by Arps and Roberts in 
which the boundaries of the region to be explored were 
selected by expert judgment.

In the model used here, it was possible to estimate 
these parameters directly from discovery time series 
data by using the concept of the area of influence of a 
drill hole (Singer and Drew, 1976). Using this ap­ 
proach, it was possible to predict accurately the 
number of deposits to be discovered within a group of 
size classes in the Denver basin from only a small 
amount of historical data. The Denver basin was cho­ 
sen to test this model because it contains only one 
major producing interval (the D and J members of the 
Cretaceous Dakota Sandstone), and so a reliable data 
base could be constructed within a reasonable period of 
time (Schuenemeyer and Drew, 1977b).

AREA OF INFLUENCE OF A DRILL HOLE

The area exhausted by a drill hole varies with the 
size of the targets that can occur in the basin. A basin 
may be fully explored with respect to large targets but

Al
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only 10 percent explored with respect to small targets. 
The shape of the targets also has an effect; for example, 
a pattern of exploratory and development holes may 
have fully searched a basin for circular targets having 
areas of 2 mi2 , although irregularly shaped targets also 
having an area of 2 mi2 are still undiscovered.

The amount of area exhausted by any given hole can 
range from a maximum of the area of the target being 
considered when the areas of influence of any pre­ 
viously drilled holes do not overlap to a minimum of 
zero when all points within the area of influence of the 
hole have been exhausted by previously drilled holes. 
Singer and Drew (1976) and Root and Schuenemeyer 
(1980) discuss this concept in detail, and Singer (1976) 
and Schuenemeyer and Drew (1977a) describe the 
computations. The degree to which the Cretaceous 
Dakota Sandstone interval in the Denver basin was 
physically exhausted by the end of each year within 
the period 1949-74 was calculated for targets up to 4.3 
mi2 in area (fig. 1). The levels of exhaustion shown are 
for elliptical targets with an axial ratio of 0.38, the 
mean axial ratio of deposits discovered during 1949- 
74. For example, the 1,096 wells drilled through the 
end of 1952 exhausted on the average 0.545 mi2 per 
well with respect to targets 1.09 mi2 in area. By the end 
of 1954, this average declined 12.4 percent to 0.478 mi2 
per well. This decline in the effective exhaustiveness of 
wells is a consequence of the progressive crowding of 
wells. For larger targets this crowding is even more 
severe. For example, for targets 4.3 mi2 in area, the 
corresponding area exhausted per well declines by 26 
percent from 1.71 to 1.26 mi2 per well during 1952-54.

In 1969 the Union Pacific Railroad released for ex­ 
ploration approximately 4,400 mi2 of virtually unex­ 
plored land in the basin (Oil and Gas Journal, 1969). 
The release and exploration of this large block of land 
during subsequent years are reflected in figure 1 by a 
slight increase in the level of the 1974 curve over the 
1968 curve. This increase is a result of the wider spac­ 
ing of holes, which normally occurs during the early 
phase of exploration of any region.

ESTIMATION OF EFFECTIVE BASIN AREA

The effective basin area is defined as that part of a 
total basin within which drillers are willing to site 
wells. Given this definition, there is no reason to as­ 
sume that the area searched will have any particular 
shape. One basin may be more or less evenly explored 
from rim to rim. In others, many wells may be clus­ 
tered in small parts of the total basin area. In such 
basins, the effective basin area may not even be a con-

01 2345 

TARGET SIZE, IN SQUARE MILES

FIGURE 1.—Average area exhausted per well (including both devel­ 
opment and exploratory) for different target sizes and number of 
wells.

nected region. 1 Using the concept of area of influence of 
a drill hole to measure the crowding of exploratory and 
development drilling, a method has been developed to 
estimate the effective basin area.

As a simplified example of this method, suppose that 
an irregular area is marked off on the floor, and then 
disks are placed at random inside the area so that they 
have as much chance of landing one place as another 
and they may overlap. After several disks have been 
placed, the boundaries of the area are erased, but the 
disks are left on the floor. The problem then is to calcu­ 
late the area, B , inside the boundaries that have now 
been erased. Suppose the disks each have area "a." In 
the current analysis, the centers of the disks are the 
locations of the wells. The disk area is taken to be the

'A region is connected if and only if any two points in the region can be joined by a curve 
line that does not go outside of the region (region is in one piece).
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area of the largest target under consideration, and B is 
the effective basin area. The average target area cor­ 
responding to class 15, the largest deposit size under 
consideration, is 4.3 mi2 . Let the function A(n) meas­ 
ure the area covered by the first n disks. The value of 
this function will then be A(n)=na if none of the disks 
overlaps and A(n) < na when they do. Assume, fur­ 
thermore, that the disks are small compared to B , the 
effective basin area. It can then be shown that even 
though A (n ) is a random variable, it grows in a regular 
fashion as n increases (Root and Schuenemeyer, 1980). 
On the average A(n} grows according to a negative 
exponential:

A(n) = B(l-e~na/B ). (1)

If an area A (n ) has already been exhausted, then the 
additional area that will be exhausted by m additional 
wells sited at random within B is given by

A(n+m)-A(n)=(B-A(n))(l-e-ma/B ). (2)

A proof of these identities is provided by Root and 
Schuenemeyer (1980).

In general, any arbitrary shape having the same 
area can be used without changing the rate of growth 
of A(n). In the following calculations, the targets are 
assumed to be elliptical. Given the area exhausted by 
the exploratory and development wells drilled through 
time (fig. 2), an estimate of the effective basin area for 
the largest class can be obtained in the case for which 
all wells are sited at random by solving equation 1 for 
B. In practice, however, development wells are not 
drilled at random but instead in a closely spaced regu­ 
lar pattern. In the Denver basin, most development 
wells have been drilled one-quarter mile apart. As a 
consequence, a development well cannot have the same 
average capacity to exhaust a region as an exploratory 
well. We therefore treat a development well as a frac­ 
tion of an exploratory well. At any time, then, the 
equivalent number of exploratory wells that have been 
drilled is specified by

n = W+Dd(a) (3)

where
n = equivalent number of exploratory wells, 
W = number of true exploratory wells, 
D = number of development wells, and 
d(a) = conversion factor for development wells. 
a = target size

The conversion factor, d(a), is a function of the target 
size, the target shape, and the spacing of development 
wells. The value of this factor for very small targets is

0 .5 1 2 3 4 5 6 

TARGET SIZE, IN SQUARE MILES

FIGURE 2.—Total area exhausted versus target size for selected 
numbers of wells.

equal to one, and, as the target size increases, d(a) 
decreases toward zero. If the spacing between holes is 
one-quarter mile and the axial ratio is 0.38, then 
targets with an area not greater than 0.0187 mi2 will 
have d(a)-l. This factor is chosen so that two target- 
like ellipses having the same orientation and centers 
one-quarter mile apart will have an area of overlap, 
averaged over all orientations of (l-d(a))a. Conver­ 
sion factors for various sizes of ellipses with axial ratio 
0.38 are presented in table 1.

TABLE 1.—Conversion factors used in computation for development 
well conversions

Class

9
10 _
11 _ __ __ _
12
13 __________
14 ___ ___ _
15 __

Size (103 barrels)

__________ 256- 512
_ _ __ 512- 1,024
_ __ _ 1,024- 2,048
_ _ _ 2,048- 4,096
_ ___ 4,096- 8,192
_ _ __ 8,192-16,384
... _ ____ 16,384-32,768

Conversion 
factor d (a)

0.54
.45
.37
.31
.25
.23 -
.16

Average 
producing area

(mi2 )

0.339
.513
.753

1.091
1.670
2.070
4.300
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Given the number and location of exploratory and 
development holes drilled, we can now solve for the 
effective basin area using equation 4,

A(n) = (4)

For estimating the effective basin area, h is computed 
using d(a=4.3)=0.16, the conversion factor for the 
largest target size.

If an area A (h ) has already been exhausted within 
an effective basin area B, then the additional area to be 
exhausted with respect to a target of area a by an ad­ 
ditional number of equivalent exploratory wells m is

-A(h)=(B-A(h))(l-e-"la'B ). (5)

The estimate ra is obtained in a manner similar to that 
of h, except that the future ratio of the number of de­ 
velopment holes to exploration holes must be assumed. 
We assumed that the future ratio would be the same as 
the past ratio.

With the results of the calculations from equation 4,

both the actual area exhausted and the estimated ef­ 
fective basin area can be graphed as a function of 
cumulative wells drilled (fig. 3). The estimated effec­ 
tive basin area increased rapidly through the drilling 
of the first 9,000 wells (1949-1957). This rapid rate of 
growth implies that the drillers rapidly expanded their 
views of where deposits could be discovered in the 
basin. During the following 10 years, when an ad­ 
ditional 8,300 wells were drilled, the effective area of 
the basin grew very little, which implies that explora­ 
tion during this period was being confined, for the most 
part, to the region established by 1957. From 1969 
through 1973, the effective basin area again began to 
grow more rapidly. This growth was caused by the re­ 
lease in 1969 of approximately 4,400 mi2 in the Denver 
basin that had been held by the Union Pacific Railroad. 
The crowding that resulted in the change in slope in 
1957 recurred in 1973—implying that the area to be 
searched was beginning to be reestablished. It is 
reasonable to assume that, had such a large region not 
been withheld from exploration, the effective basin 
area curves would have shown only one change in 
slope, from growth to stabilization.

WELLS, IN THOUSANDS

FIGURE 3.—Area exhausted and effective basin size versus cumulative wells for 4.3-mi2 targets.
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CONCEPT OF DISCOVERY EFFICIENCY

Historical exploration records show that as explora­ 
tion proceeds, the rate of discovery declines; that is, 
exploratory drilling begins in the more productive 
parts of a basin and later moves to the less productive 
parts of that basin. The concept of discovery efficiency 
is used to measure this phenomenon. A discovery effi­ 
ciency of 1 is used as a reference point that defines the 
outcomes of a random search process. In such a search, 
the number of deposits discovered in each size class per 
unit area exhausted remains constant throughout the 
total exploration history of one region. For example, if 
the ultimate effective basin area were 10,000 mi2 and 
100 deposits existed in a certain size class at the start 
of the search process, we would expect 10 deposits to be 
discovered with the exhaustion of each 1,000 mi2 of the 
region.

If the exploration process were better than random, 
we would expect a larger number of deposits to be 
found during the earlier stages of exploration. For 
example, if the discovery efficiency were 2.5 in the pre­ 
ceding example, the exhaustion of the first 1,000 mi2 
would produce 23.2 discoveries versus 10 discoveries 
for the random search. The number of discoveries ex­ 
pected to be made in this example for each 1,000 mi2 
exhausted is shown in table 2. These values were com­ 
puted from the following discovery process model:

(6)

where
f = the fraction of the deposits that have been 

found,
A — area that has been exhausted,
B = effective basin area, and
c = the discovery efficiency.

A graph of the cumulative number of discoveries as a 
function of area exhausted for two different efficiencies 
is schematically diagrammed in figure 4.

TABLE 2.—Expected number of discoveries per 1,000 square miles 
searched for efficiencies of 1 and 2.5

Area searched 
(mi

Expected number of discoveries 
per 1,000 mi2 searched

1,000 __________________
2,000 __ ___ __ _ ____.
3,000 _ _ ______________
4,000 __ _ — _ _ _____
5,000 ____________ _ __.
6,000 __________________
7,000 __________________
8,000 ——— _ _ ________
9,000 _________________

10,000 ______ ___ _____

Efficiency = 1

— — __ — - - — 10
_____________ _ 10
— - __ ___________10
— - _ ___________10
__________ _ __ _ _10
_ _ ____ __ _______10
————— _ ————— 10
— __ ____ ___ ___10

10
— ___ — _ -—10

Efficiency = 2.5

23.2
19.6
16.2
13.1
10.2
7.6
5.2
3.1
1.5

.3

1.0 r

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

FRACTION OF BASIN EXHAUSTED

0.9

FIGURE 4.—Theoretical graph of cumulative fraction of targets dis­ 
covered versus fraction of basin exhausted for two different 
efficiencies.

While it is theoretically possible for a discovery effi­ 
ciency to be less than 1, this value is of no relevance 
because it implies a steadily increasing discovery rate 
through the end of the exploration process; in the long 
run, drilling would terminate when the discovery rate 
reaches its peak! In the short run, however, a sudden 
geologic insight or chance fluctuation could cause the 
discovery rate to increase for a period of time (fig. 5). If 
the method for computing efficiencies described below 
results in an efficiency of less than 1, the efficiency is 
set equal to 1.

ESTIMATION OF DISCOVERY EFFICIENCIES IN 
THE DENVER BASIN

From the trend in the discovery rate (the number of 
discoveries per unit area exhausted), the efficiencies in 
each class of deposit size were estimated. In the estima­ 
tion of the efficiencies it is necessary to choose a basin 
size. The assumption that the entire basin is available 
for drilling ignores two effects; namely, that explora­ 
tion tends to follow past discoveries, and drillers tend 
to explore the shallower parts of a formation before the 
deeper. These effects combine to produce a greater 
crowding of wells than would occur with random drill­ 
ing. This greater crowding results in an underestima­ 
tion of the area that will ultimately be explored.

We have found a way to adjust the model that com­ 
pensates for the fact that the area being considered for 
exploration grows through time. For estimating the
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AREA EXHAUSTED

FIGURE 5.—A possible anomalous discovery rate that initially ap­ 
pears to have a discovery efficiency less than 1.

efficiency of exploration for fields of each size class, the 
basin size used was the basin size estimated for that 
size class. For estimating future discoveries, the basin 
size used was that estimated for the largest size class. 
The theoretical description of the search of an expand­ 
ing area is still under investigation.

Efficiencies were estimated annually2 for the years 
1952-69. Seven efficiency estimates (1963-69) for 
seven deposit size classes are given in figure 6. No 
trend with time was found within each series of esti­ 
mates. No estimate was made for class 16 (32.7-65.5 
million barrels) because only one deposit was discov­ 
ered in this, the largest class, and an estimate would be 
statistically meaningless. Efficiency increases as de­ 
posit size increases (fig. 6). Efficiencies less than 1 oc­ 
curred in classes 9, 10, and 11, but for the purpose of 
estimating future discoveries, it was assumed that in 
the long run no efficiency can be less than 1. If the 
estimated efficiency was less than 1, then for purposes 
of prediction, it was set equal to 1.

The relation between the discovery efficiency and the 
shape of the cumulative discovery curve can be seen by 
comparing the efficiencies estimated in figure 6 with 
the discovery curves shown in figures 7-10. For exam­ 
ple, the discovery efficiency within class 12 was esti­ 
mated to be approximately 2.6, and the discovery curve 
has a markedly decreasing slope (fig. 9). An efficiency 
of this magnitude implies that when half the effective

'The details of the calculation procedure are presented in Root and Schuenemeyer (1980).

10 11 12 13 

DEPOSIT SIZE CLASS

14 15

FIGURE 6.—Computed discovery efficiencies for classes 9 through 
15 for years 1963-69.
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FIGURE 7.—Cumulative discoveries versus area exhausted for class 
size 9 (256,000 to 512,000 bbl).

basin area has been exhausted, 84 percent of the depos­ 
its containing between 2.048 and 4.096 million 
barrels of recoverable petroleum will have been found. 
The efficiency of discovery for the deposits in class 9 
(0.256 to 0.512 million barrels) was approximately 1.4 
(fig. 7). This value means that deposits of this size were 
found at nearly a uniform rate through 1969, as the 
nearly straight cumulative discovery curve for this 
class of deposits shows (fig. 7). The discovery efficiency 
for the deposits in class 10 (0.512 to 1.024 million 
barrels) was estimated to be less than 1.0 (fig. 8) be-
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FIGURE 8.—Cumulative discoveries versus area exhausted for class size 10 (512,000 to 1,024,000 bbl).

cause the discovery rate increased rapidly during the 
exhaustion segment from 1,500 to 3,000 mi2 . As we 
have previously discussed, this phenomenon can be 
only temporary, and, as shown in figure 8, the discov­ 
ery rate declined during the second half of the exhaus­ 
tion sequence. No obvious geologic cause could be iso­ 
lated to explain this temporary increase in the rate of 
discoveries.

PREDICTING FUTURE DISCOVERIES WITHIN A 
SIZE CLASS

The model of the discovery process shown in equa­ 
tion 6 was used to predict the ultimate number of de­ 
posits to be discovered and the number of deposits to be 
discovered for a given area exhausted. Each of these 
predictions is made within a deposit size class. The 
predictions made for some later segment of exploration 
are designed to answer the question: How many depos­ 
its may one expect to find by drilling a certain number 
of additional wells, given the previous exploration his­ 
tory?

In order to validate the model given in equation 6, 
resource appraisal estimates have been made within 
each deposit size class from the discovery time series 
for various years beginning in 1952. The last year of 
historical data used in the prediction is called the pre­

diction year. The number of discoveries estimated from 
the end of the prediction year until 1969 and until 1974 
is compared with the actual number.

Before a forecast can be made, the following esti­ 
mates are calculated: (1) the ultimate number of depos­ 
its within each size class; (2) the area that will be phys­ 
ically exhausted by the number of wells actually 
drilled between the time the forecast is to be made and 
the end of 1969 and 1974; and (3) the discovery effi­ 
ciency.

The number of deposits estimated to have existed 
originally in each size class is obtained from equation 
6. Given the fraction of the effective basin area still 
remaining to be explored and the corresponding dis­ 
covery efficiency for each class, the fraction of deposits 
remaining to be discovered is (1 —A/5 Y. The number of 
deposits then estimated to have occurred originally in 
each size class is obtained by dividing the number al­ 
ready discovered in a class by 1 — (1— A/BY. From this 
calculation we then can construct a resource appraisal 
for the basin for any segment of the exploration data 
time series.

The estimate of the basin area for class 15 is ob­ 
tained from equation 4. Once the basin area has been 
determined, we then assume that the ratio of explo­ 
ratory to development wells remains constant. Then 
we can calculate from equation 5 the additional area to
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8000 9000

be exhausted for a given number of additional wells. 
The basin size estimated for deposits of size class 15 is 
used in this calculation. Using these estimates, the 
number of discoveries expected within each size class 
from the end of the prediction year through 1969 and 
through 1974 are computed.

Sample calculations for future discoveries through 
1969 in deposit size class 12 are presented in table 3 for 
the prediction year 1957. In the computation of ad­ 
justed future wells, the number 2 appears as a divisor 
because the ratio of exploratory to development drill­ 
ing has been found through time to be approximately 
equal to 1.

PREDICTION OF FUTURE DISCOVERIES ACROSS 
SIZE CLASSES

An estimate of the total volume of petroleum to be 
discovered was obtained by summing the future oil dis­ 
covered over size classes 9 through 15 (deposits be­ 
tween 0.256 and 32.768 million barrels). This estimate 
was then compared with the volume actually discov­ 
ered to test the validity of the prediction. In addition to 
estimating the total volume of petroleum to be discov­ 
ered, it is necessary for purposes of economic analysis

TABLE 3.—Sample calculations for future discoveries in size class 12 

Basic Data
Description Symbol Value

Area exhausted to December 31, 1957 __ A (1957) 4,165 mi2 
Target area____________________________ a 1.09mi2
Estimated effective basin size __________S 10,624mi2
Correction factor for development wells __ d 0.31 
Discovery efficiency ____________________c 2.577
Number of discoveries

to December 31, 1957 __________ N 34 
Average volume of recoverable oil ____ 2.863xl06bbls 
Future wells from January 1, 1958,

to December 31, 1969 __________ 9,765

Calculations

„ 9765 + 9765(0.31) _ 00 _ Adjusted future wells = m = ————-——————- b,dyb

A(1969) = CB-A(1957))(l-e-";'</B ) + A(1957) = 7,273 mi2

(1957) 
Unexplored fraction of basin (1957) = 1 - A —— = 0.608

D

(1969} Unexplored fraction of basin (1969) = 1-A v " = 0.315
D

Undiscovered fraction of targets (1957) = (0.608)c = 0.277 
Undiscovered fraction of targets (1969) = (0.315)c = 0.051 
Fraction of targets discovered (1958-69) = 0.226

N Estimate of ultimate number of targets = = 47.0
J.—U.^ / /

Estimated number of discoveries (1958-69) = (47.0)x(0.226) = 10.6 
Future oil discovered (1958-69) = 10.6x2.863x!06 = 30.3 xlO6 bbls
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FIGURE 10.—Cumulative discoveries versus area exhausted for class size 13 (4,096,000 to 8,192,000 bbl).
to predict accurately the number of deposits to be dis­ 
covered in each size class.

The prediction of the total oil to be discovered is the 
sum of seven quantities, each subject to independent 
random fluctuations that on the average tend to cancel 
each other; thus the total is a more stable quantity. On 
the average, estimated efficiencies tend to increase 
with deposit size class (fig. 6). Deviations from this 
trend are attributed to random fluctuations.

The prediction of the total amount of oil to be discov­ 
ered by drilling 18,762 wells changes as the initial 
drilling and discovery sequence on which it is based 
changes (fig. 11). Thus, using only 5 years of data 
(1949-54), or 19 percent of the wells drilled through 
1969, the basin size and efficiencies are sufficiently 
well determined to permit accurate estimation of the 
oil to be discovered by the next 15,195 wells. In order to 
use this estimate for economic calculations, it is neces­ 
sary to be able to predict the size distribution of depos­ 
its. Predicted and actual future discoveries agree 
closely across size classes using 1954 as the prediction 
year (fig. 12). This agreement is particularly good in 
the larger, more important size classes.

The calculations made through 1969 were repeated 
for the 22,577 wells drilled through 1974 (figs. 13 and 
14). During the 5-year period beginning in 1969, the

land released by the Union Pacific Railroad was ex­ 
plored. The late release of this much land might have 
caused the model slightly to underestimate the amount 
of oil to have been discovered through the end of 1974.

(/) DC
QOC
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through 1969^

/-Predicted totel 
/ discoveries

Emulative discoveries
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20.0

FIGURE 11.—Seventeen successive predictions of the total volume of 
petroleum to have been discovered by the end of 1969 in classes 9 
through 15.
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DISCUSSION

In assessing the petroleum potential of an area as 
described above, no use was made of the geologic and 
geophysical knowledge acquired during the explora­ 
tion of the area. Several reasons exist for not making 
direct use of such information. Geologic and geophysi­ 
cal data are difficult to assemble because they are scat­ 
tered among many exploration companies and they are 
often confidential. Even if the data were gathered, a 
resource estimate for a partially explored area based 
upon them would have to be taken on faith because the 
data set would be too large and complex to communi­ 
cate. Moreover, the reasoning by which one proceeds 
from geologic and geophysical knowledge of a basin to 
an estimate of the number and sizes of undiscovered
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FIGURE 14.—Histogram comparing actual versus predicted petro­ 
leum discovered within size classes 9 through 15 for discoveries 
made between January 1, 1956, and December 31, 1974, based on 
data to December 31, 1955.

fields and the number of wells required to find them is 
largely subjective and intuitive and hence difficult to 
expose.

Although direct use of geologic and geophysical in­ 
formation is not feasible, this information is contained 
implicitly in the record of drilling and discovery insofar 
as it affected the siting of wells. For example, in the 
Denver basin, the effective basin size is determined by 
geologists and is revealed through the siting of wells. 
The effective basin area was estimated here to be about 
10,000 mi2, or about one-fifth of the whole Denver 
basin. This area was deduced without directly examin­ 
ing the reports on prospects in the other fourth-fifths of 
the basin. The examination of those reports was left to 
those who were siting the exploratory holes.

From the discovery rate, one can estimate how well 
exploration prospects are evaluated. The decline in the 
discovery rate (quantity of oil found per unit area 
searched) gives a quantitative measure of the superior­ 
ity of actual exploration over random drilling. This 
superiority, measured by the parameter "efficiency of 
exploration," shows to what extent the better prospects 
are drilled early. The efficiency of exploration in the 
Denver basin was found to be about two to four times 
better than that of random drilling in the search for 
targets in larger classes (2xl06bbl to 32xl06bbl) and 
to be about the same as that of random drilling in the 
search for small targets. Thus, both the area to be ex­ 
plored and the efficiency with which it is being ex­ 
plored can be deduced from the drilling and discovery
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record. When the area to be searched and the efficiency 
of search are known, one can extrapolate the .past dis­ 
covery record to obtain a reasonably accurate forecast 
of the number and sizes of oil fields that will be discov­ 
ered by a given amount of future exploratory drilling. 

For the Denver basin, the discovery record of the first 
3,638 exploratory wells was extrapolated to provide 
forecasts of discoveries to be made by the next 7,929 
exploratory wells. The future discoveries were divided 
into six different size classes. In most of these size 
classes, close agreement was observed between the 
predicted and actual discoveries. Estimates of future 
oil discoveries are difficult to make in the larger size 
classes because of the paucity of data. However, at the 
time in the discovery sequence when sufficient data are 
available to estimate future oil discoveries, most of the 
large deposits have been discovered, and the interest is 
in predicting the number of moderate size deposits re­ 
maining to be discovered.
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PETROLEUM-RESOURCE APPRAISAL AND DISCOVERY RATE 
FORECASTING IN PARTIALLY EXPLORED REGIONS- 

MATHEMATICAL FOUNDATIONS

By D. H. ROOT and J. H. SCHUENEMEYER

ABSTRACT

A stochastic model of the discovery process has been developed to 
predict, using past drilling and discovery data, the distribution of 
future petroleum deposits in partially explored basins, and the basic 
mathematical properties of the model have been established. The 
model has two exogenous parameters, the efficiency of exploration 
and the effective basin size. The first parameter is the ratio of the 
probability that an actual exploratory well will make a discovery to 
the probability that a randomly sited well will make a discovery. The 
second parameter, the effective basin size, is the area of that part of 
the basin in which drillers are willing to site wells. Methods for 
estimating these parameters from locations of past wells and from 
the sizes and locations of past discoveries were derived, and the prop­ 
erties of estimators of the parameters were studied by simulation.

INTRODUCTION

This paper presents the mathematical derivations 
for the estimators of the parameters used in a model of 
the discovery process proposed by Drew, Schuene- 
meyer, and Root (1980). The model was designed to 
summarize the past exploration and discovery experi­ 
ence in a region in order to predict the quantity of 
recoverable oil that future exploration could be ex­ 
pected to find. The model was developed because a 
significant amount of the petroleum remaining to be 
discovered in the United States and elsewhere is in 
regions where there has already been some exploratory 
drilling.

During exploration, a large amount of data is gen­ 
erated, including seismic surveys, magnetic surveys, 
geologic maps, well logs, discovery sizes and locations, 
and drilling dates and locations of discovery wells and 
dry holes. Because it is not feasible to use all the avail­ 
able data, a subset must be selected. The data incorpo­ 
rated in the model were the dates and locations of past 
exploratory wells together with the locations of discov­ 
ery wells and the sizes of any deposits that were found. 
The geologic and geophysical data are thus implicitly 
included in that they guide the drilling and discovery 
process.

If exploration were completely random, then the 
probability of a given oil field being found by a single 
exploration well is the ratio of the area of the field to 
the area being searched. A model developed by Arps 
and Roberts (1958) assumes that the probability of an 
exploratory well discovering a given oil field is the 
product of a constant, the efficiency of exploration, and 
the ratio of the area of the field to the search area. In 
that model the measure of exploration was the number 
of exploratory wells. The model proposed by Drew, 
Schuenemeyer, and Root (1980) is similar to the model 
of Arps and Roberts but uses a different measure of 
past exploratory effort. Rather than the number of ex­ 
ploratory wells, it uses the cumulative area exhausted 
by these wells (Singer and Drew, 1976). The area 
exhausted by a well is related to the area and shape of 
the deposits under consideration. For example, for cir­ 
cular deposits having a radius of 1 mi, a dry explo­ 
ratory well tells the explorer that the center of such a 
target cannot lie within 1 mi of the well and 3.14 mi2 
have been exhausted so far as such deposits are con­ 
cerned. A pattern of dry wells will exhaust, with re­ 
spect to such targets, an area equal to the area covered 
by all circles of radius 1 mi centered at each well. Be­ 
cause these circles may overlap, the exhausted area 
may be less than the number of wells times the area of 
a circle. If the deposits are elliptical having a major 
axis of, say, 4 mi and a minor axis of 2 mi, then a dry 
well exhausts all of the area within I mi of the well, 
none of the area more than 2 mi away, and partially 
exhausts the area between 1 and 2 mi from the well. A 
deposit centered within 1 mi from the well would have 
been hit regardless of its orientation, assuming cer­ 
tainty of recognition. If the center of the deposit is be­ 
tween 1 and 2 mi from the exploratory well, the deposit 
would have been hit for some orientations but not for 
others. The degree to which a point is exhausted is the 
probability that a randomly oriented deposit centered 
at the given point was hit. This concept of area ex­ 
hausted can be used as a measure of the extent of ex­ 
ploration for targets of any given size and shape.

Bl
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When an exploratory well is successful, then any 
point within 2 mi of the discovered deposit would have 
been partially exhausted for elliptical targets 4 mi by 2 
mi. The degree of exhaustion at a point is the prob­ 
ability that a randomly oriented 4-mi by 2-mi ellipse 
centered at the point would have intersected the dis­ 
covered deposit. This example illustrates that the area 
exhausted is a function of the size and shape of the 
deposits being considered and that more area is 
exhausted for larger deposits than for smaller ones. In 
the analysis of the discovery data, deposits are divided 
into size classes. All deposits within a given size class 
have approximately the same area, and each of these 
classes is analyzed independently. The following dis­ 
cussion focuses on elliptical deposits of the same size 
and shape.

If exploratory wells are randomly sited, then the pe­ 
troleum richness of the area exhausted remains ap­ 
proximately equal to the richness of the unexplored 
area so that the fraction of all the deposits that are still 
undiscovered remains approximately equal to the frac­ 
tion of the search area that has not been exhausted. If 
the exploration is better than random, then the petro­ 
leum richness of the area exhausted is greater than 
that of the area remaining to be searched.

In order to predict future discoveries, it is necessary 
to know the ultimate area of exhaustion that may be 
expected. This search area, defined as that part of the 
basin where operators are actually willing to site wells, 
is called the effective basin, and it may be only a small 
fraction of the entire basin. Because the size of the 
effective basin is an unknown quantity that typically 
grows through time, it was estimated from growth of 
the physical exhaustion time series.

ESTIMATION OF BASIN SIZE

We assume that within a large geologic basin there 
is a smaller effective basin to which the search for oil is 
restricted. Depth is not considered; the targets and the 
basin are assumed to be two-dimensional. The oil fields 
are assumed to be nonoverlapping ellipses all of the 
same size and shape inside the effective basin. The 
orientation of the targets, the angle between the major 
axis of the ellipse and the east-west line measured 
counter clockwise from the east-west line, may be 
anywhere between 0° and 180°. The search consists of 
the searcher selecting a point (drilling a well) in the 
effective basin. If the point is in a target, then the 
searcher is told the location of the boundaries of the 
target. This information approximates what would 
be learned in practice by subsequent development 
drilling.

There is an (x, y) coordinate system on the basin 
having x increase to the east and y increase to the 
north. The position of a target is completely specified 
by three coordinates (x,y, 0), where x and y specify the 
location of the center and 8 gives the angle between the 
major axis of the ellipse and thejc-axis of the coordinate 
system measured counterclockwise from thex-axis. We 
define a search solid, S, to be all points (x,y, 6), where 
(x, y) is a point in the geologic basin and 8 is between 0° 
and 180°. Then any target in the geologic basin corre­ 
sponds to a unique point in S and vice versa. We can 
visualize S as a cylinder 180 units high and having a 
base of the same size and shape as the geologic basin. 
Thus the 0-axis is vertical, and the x-y plane is horizon­ 
tal.

When a search point (x',y') in the effective basin is 
selected and is not in a target, then every point (x,y, 8) 
in S that corresponds to an ellipse in the geologic basin 
that contains the search point, (x', y'), is eliminated 
from further consideration. The set of points in S con­ 
demned by an unsuccessful search point at (x',y') can 
be visualized as the volume swept out by a horizontal 
target-size ellipse centered at (x',y', 0°) with major axis 
lying along the jc-axis as it rises to (x',y', 180) while 
rotating 1°, counterclockwise from above, for each de­ 
gree it rises. Each point in this volume corresponds to 
an ellipse in the geologic basin that would contain (x', 
y'). When a search point is successful, then the points 
in S that are eliminated are all those points corre­ 
sponding to ellipses that would intersect the target 
which was found. The introduction of the space S has 
changed the problem from search points looking for 
area targets to search volumes in S looking for point 
targets inS. The cumulative volume inS that has been 
eliminated by successful and unsuccessful search 
points in the effective basin, EB, is measured in acre- 
degrees. This unit, the acre-degree, is the unit in which 
we will measure the extent of exploration.

Inside the search volume, S, we define the effective 
search volume, ES, as all points (x, y, 8) in S where (x, 
y) is a point in the effective basin. The size of the effec­ 
tive basin is not known to the data analyst. We will 
give a method for estimating the effective basin size 
from well locations under simplifying assumptions and 
then describe how the method is modified to fit more 
realistic assumptions. At first, it is assumed that wells 
are sited randomly in EB according to a uniform prob­ 
ability distribution. From this assumption we derive 
an estimator of effective basin size which is then 
modified to account for the fact that development wells 
are always close to existing wells.

Let EB be the effective basin, let ft be the Lebesgue 
measurable sets on EB, and assume EB is endowed 
with the uniform probability measure. Let fl =
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EB xEBx. .., a countable product of copies of the effec­ 
tive basin. Let f3m be the smallest <r field containing all 
sets of the form AjX. . .xAm xEB. . . where each A, is a 
Lebesgue measurable set in EB. Let /30 be the trivial <r 
field on n. A function defined on O can be fim measura­ 
ble only if it is dependent on at most the first m coordi­ 
nates of a point of O. LetdjJ = 1, 2,... be a sequence of 
positive numbers. Let D } (P) denote a disk of area d3 
centered at the point P. If (Pl5 P2v . .) is a point in O, 
define a(j,n; P x , P2j . . .) to be the total area covered by 
DjCPj),. . ., Dj(Pn ). Because a(j,ri) is a continuous func­ 
tion of PI, ., Pn it is measurable with respect to fin .

Using the notation just defined we now establish the 
basic theorem for the estimation of effective basin size. 
Theorem: If d}-^0 as 7—»°° and n and j are made to 
approach infinity in such a way that ndj-^A where A is
an arbitrarily selected positive number and if EB is a 
bounded set whose boundary has zero area, then

> 1 in probability.EB(l-e-A/EB )

The symbol EB is used for both the effective basin and 
its area.
Proof: The proof proceeds by first showing that 
E(a(j,n))^>EB (l-e~A/EB ) and then showing that 
a2(a(j ,rc)}-»0. Let a sequence 13,7'= 1,2. . . . of positive 
numbers be defined by the equation 7rrf=dj. Define 
EB(rj+) to be all points (x,y) for which there is a point 
(x',y') in EB such that (x'-x)2 + (y'-y)2^. Define 
EB(r} —) to be all points (x,y) inEB for which there is no 
point (*',/) outside ofEB such that (x'-x)2 + (y'-y)2 ^

Thus EB(rj+) is EB swelled by 15 and EB(r} -) is EB 
shrunk by r5 . Define dEBfa) by dEB(rf) = EB(r.)+) - 
EB(rj — ). Thus dEB(r}) is all points within 73 of the boun­ 
dary ofEB. Let fj be a function defined over EB(rj +} by

l
forP inEB (^~

area forP in

Then/j(P) is the probability that a randomly located 
disk Dj will cover the point P. Let S(j ,n\P ±,P 2, . . . ) be 
the set in EB(rj+) actually covered by the first n disks 
Dj(Pi), . . . , Djifn). We now establish an inequality by 
successive conditioning. From the definition of condi­ 
tional expectation we have, letting S = S(j,n-l\

E(a(j,n)

since fj

(1)
S

we have

S

Substituting this expression for the integral yields 

E(a(j,n) \ Pn-i)^ dj + (l-dj/EB)a(j,n-l). (2)

Next we condition both sides with respect to /3n _2 ; recall
that
E(E(a(j,n)

(I - dj/EB)E(a(j,n - 1)|A,_2). (3) 

Applying our inequality (1) to E(a(j,n-l)\(3n -2) gives

E(a(j,n-l)\pn-2 ) ^ dj + (l-d}/EB)a(j,n-2). (4) 

Combining (3) and (4) gives

=dj+(l-dj/EB)dj+(l-dj/EB)2a(j,n-2).

Continuing this process through n—2 more condition­ 
ings gives

£(a(7») = E(a(j,n)\ 00) & 4 S (l-dj/EB) k (5)
&=o

and

}K=0
(l-dj/EB) k =EB-EB(l-dj/EB) n+l . (6)

Because we assume that nd} —»A we have that the 
R.H.S. of (6) approaches EB-EB e~A/EB . Thus we may 
conclude

!™LE(a(jsi» (7)

when ndj — »A as n,j -^><x>
Referring back to equation 1, we now seek a lower
bound for / £(P)dP.

o

Recall that j is d}IEB on EB(r5 -) and it takes smaller 
values on dEB(r-} so we assume that as much of 
S(j,n - 1) is in d EB (73) as possible to find a lower bound. 
Thus

S
fi(P}dP 

SftEBfy-) SftdEBdj) Sr\EB(r } -)

The area of SO>-l)nEB(7--) is at least a(j,n-l) 
-dEB(r j), where dEB(r j) is used to denote the area of 
dEB(ij). Thus/ j(P)dP ^ (a(j>-l) -

o

which yields the inequality,
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E(a(j,n) !#,_,) «s
dj + a(j,n-I) - (a(j,n-l) - dEB(rj))dj/EB

=dj + a(j,n-I)(I-dj/EB) + (dEB^dJEB. 

As before we condition both sides on (Bn - 2 and obtain
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n
2

k =

|j3w _2 ) ^ dj + (l-dj/EB)E(a(j,n-I)\pn -2 ) 
(dEB(rj))dj/EB ^ d} + (1-dj/EBKd, + (l-dj/EB) x

dj + (l-dj/EB)dj + (dEB(rj))dj/EB
+ (l-dj/EBfa(j,n-2)
+ (l-dj/EB) (dEB(rj ))dj/EB.

We repeat this process for j3w _3, ;3W _4 , . . . ,j30 to obtain 

E(a(j,n))
n-l

j 2 (l-dj/EB)k

n-l
+ (dEB(rj))dj/EBx 2 (l-dj/EBy. (8)

Since the boundary of ES has 0 area and since EB is 
a bounded set it follows that dEB(r]) -»0 as /j -»0. Hence 
as TIJ' -»e» the second term in (8) goes to 0. The limit of 
the first term was calculated before (see equation (6)) to 
be EB(l-e-A/EB ). 
Hence we have shown that

lim (9)

when ndj —> A.
Combining (9) and (7) we have that 
E(a(j,n)) ^EB(l-e-A/EB ) when nj ̂ oo and nd } ^A. 

To complete the proof of the theorem, it is sufficient 
to show that the variance of a(j,n), cr2(a(j») ->0 as nj 
^•oo and nd) -> A. This will be done by establishing

(10)

cr2(aO») =
We decompose the function a(j,n) — E(a(j,n}) into a 
sum of orthogonal functions

By definition of variance

Because the n summands are orthogonal, we have that

We will have completed the proof of (10), and hence 
of the theorem, when we have shown that

Let (P lf . . . , Pk - lt Pk , Pk+l , . . . , Pn , • • • ) = P and 
(P,, . . . , P*-!, P^, Pfc+1 , . . . , PBf . . . ) = P' be two points

in ft which agree in each of the first n coordinates ex­ 
cept for the kth . Then aO»(P) - a(j,«)(P') ^ rf, be­ 
cause they differ only in the position of a single disk of 
area dj. Hence

E(a(j,n)\(Bk )(P 1,...,Pk )\ 
Hence it follows that

This last inequality completes the proof of (10). The
theorem then follows from Chebyshev's inequality.
End of proof.
Corollary: If, in the above theorem, the sets Dj are re­
placed by ellipses of area dj all having the same orien­
tation, then the conclusions of the theorem still hold if
the major axis of Dj — »0 asj — »°°.
Proof: The only modification required in the theorem is
to let /j be equal to one-half of the major axis of Dj.

We can derive an estimator for EB from the above 
theorem and corollary. When n points in EB have been 
selected at random, disks of area d are centered at each 
point and the total area covered, a(n), is measured. The 
estimate, EB, forEB is then chosen to satisfy the rela­ 
tion

a(n) =EB (l-e-nd/£B ). (11)

PRACTICAL DIFFICULTIES AND 
MODIFICATIONS

There is the practical problem of what size disk to 
use. If d is too small, then a(n) = nd from which it 
follows that K& = 0° . On the other hand, if the disks 
are too large, then because EB>a(n)> d, we will get 
unreasonably large estimates for the effective basin 
size. The problem of disk size is further complicated by
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the effect of target size on the effective basin size. For 
example, a very large area may be sparsely drilled for 
very large targets, whereas the search for small targets 
might be restricted to a smaller area. The assumption 
of random location of wells is not applicable to devel­ 
opment wells, which are always sited near existing 
wells, so the disks around development wells cover 
very little additional area compared to what the aver­ 
age randomly located disk would cover.

In applying the estimator, EB, denned by equation 
(11) in the analysis of the discovery of targets of a par­ 
ticular size class, d was taken to be the area of the 
targets in question, a(n) was taken to be the acre- 
degrees in the search solid which had been exhausted 
divided by 180, and n in the exponent was taken to be 
the number of wildcat wells plus a fraction, a, of the 
number of development wells. The fraction, a, is chosen 
to satisfy the condition that ifD 1 andD2 are target-size 
and target-shape ellipses having the same but ran­ 
domly selected orientation and centers 0.25 mi apart 
(40-acre spacing), then (1 + a)d is the expected total 
area covered by D^ and D2 . Thus a is between 0 and 1 
and decreases as target size increases.

EFFICIENCY OF EXPLORATION*

We assume that there are N target ellipses all of the 
same shape and area inEB and that they correspond to 
N points inES, the effective search solid. Let T{ be the 
fraction o{ES that had been exhausted at the time of 
the i th discovery. Thus Q<Tl <T2 < . . . <TN <1. Because 
the search process is random, the T{ are random. We 
wish to find the joint probability distribution of these AT 
random variables as a function of the efficiency of ex­ 
ploration. We say that exploration is c times as effi­ 
cient as random if an infinitesimal amount of search is 
c times as likely to make a discovery as if it were 
purely random. Specifically, if "a" of ES has been 
searched and N-k + l targets remain to be found, then 
as the fraction of ES searched increases from "a" to 
"a+Aa," the probability of discovering exactly "j" 
targets in the case of a purely random search is

Aa 1— a—Aa\ N-k+i-

From this expression we now find the density of Tk in 
the case of purely random search. Let/j^a \Tk^ = ak- v } 
be the conditional density of Tfe , given that the k — 1 
discovery occurred atafe _!. Clearly/£(a |Tfc _! = afc _!)=0 
for a<afe _! or a>l. 
Suppose afe_!< a < 1; then

*A part of the results in this and the next section appeared in Schueneme>er and Root 
(1977) and are reproduced here with permission from American Statistical Association.

fk (a Tfc _! = afc _i)

= lim 1 P[a<rfc < a+Aa | Tk^ = afc_J 
Aa—»0 Aa

= lim 1 P[Tk < a+Aa | Tk > a and 
Aa—»0 Aa

= lim 1
Aa-*0 Aa 

/1-a-Aa
V !-« t

] V PfT "> n T — n 1 XN x 1 x I/. --"^ Cc- x fr _ i — CZlr _ 1 1 |_ n. ft. i ft. 1J

.7 = 1 V J A 1-a /

)
W-A- + l-j / \ A'-fc + l 

x 1 1-a l
X Vl-Oft-J

N-k + l

= N-k + l fl-a
1-a 

We isolate the factor

lim 1_ P[Tk < a+Aa | Tk >a and Tfc _ t = a^ 
Aa—»o Aa

and call it the instantaneous rate of discovery for the 
& th discovery, given that the next discovery is the & th 
discovery. In purely random exploration, this instan­ 
taneous rate is

N-k + l 
1-a

We say that exploration is c times as efficient as 
random exploration if the instantaneous discovery rate 
for the &th discovery is

c (N-k + l\ i ————— i •
V I-" /

The instantaneous discovery rate for the kth discovery 
determines the conditional density of Tk given Tk-i. 
For if^fc (a JTfc-i) is the conditional density for Tk given 
TVi and Afc (a|Tfc _i) is the instantaneous discovery 
rate, then hk and gk must satisfy the relation

hk (a Tk-J =

whenever a > Tfc _i. Thus hk andgfe each determine the 
other. Using the above notation we now establish the
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main theorem from which the estimator of the effi­ 
ciency is derived.
Theorem: If the efficiency is c > 0, then 7\,. . . ., TN 
have the same joint density as the order statistics of 
N independent random variables Xi, . . , XN taking 
values on the interval [0, l] and having the density

Moreover if Tk < a < Tk+l for some fixed "a," then 
k

has the same density as the sum of k independent ran­ 
dom variables Z lt . . ,Zk each having the density

ce 0 <z < - In(l-a). 

otherwise

Proof: Let Xlf . . , XN be independent random variables 
with common density

{ C \^ -L J(f) \J *^~*. jC ^-* J_ 

0 otherwise

and distribution function F(x) = l-(l-^)c . 
Let yi? Y2,. . , YN be their order statistics, that is, Yl is 
the minimum of Xlt X2 , . . , XN and Y2 is the next larger 
and so forth, YN being the maximum of Xlt . . , XN .

In order to show that Ylt . . , YN and 7\,. . , TN have 
the same joint density, it is sufficient to show that

and
= c(N-k + l)

the instantaneous discovery rate for the & th discovery.

lim J_ 
Aa— »o Aa

Yk >a and Yk^

_ lim 1. P[Yk <a+i\a and Yk >a and Yk -i<a] 
~ Aa P[Yk >a and 5V,<a]

lim J_ 
Aa—»o Aa

N-k + l
N-k + l\ x 
7

lim 1 
Aa—»o Aa

(N-k + l) f(a) (N-k + l) cd-af 1 c(N-
l-F(a) (l-a) r 1-a

Hence Ylt .., YN and Tlt . . , TN have the same joint 
density. The last part of the theorem follows from the 
fact that Z, has the density of -ln(l-Xt ) given that 
Xt < a and -Sl/iCl-Tj) has the same probability

all Ti<a 
distribution as -Sl^(l-F,-) which has the same

all Y( <a 
probability distribution as — 2 l/i(l— X,-).

allX( <a 
The joint density of T l9 . . . , TN is given by

N 
f(ai ,..aN ) =N\ C N 77 (l-a,)'" 1

The conditional density of 7\, . . , Tfc , given that there 
are exactly £ discoveries in the exploration of "a" of the 
search solid, is given by

1 aA 

a a
1, . . ,Q,\-)ClClk +i . . . Udff

.< a and7\. +1 >a]

Two important features of this joint density are that 
it is independent of AT and that a sufficient statistic for 
"c" is given by

77 (1-a,.).

Hence - ^ In (1-a,) is also a sufficient statistic

for c given that there are k discoveries. From the previ­ 
ous theorem we can calculate that
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E _ 1 - 1

l-(l-a)c

1 + (l-ctf Ire(l-a)

We can thus obtain a point estimate, c, for c based on 
di, . . ,ak by choosing c so that

~ T *

Such a c will exist only if

and this inequality need not always hold.
In the practical problem of oil exploration (see Drew 

and others, 1980) it is reasonable to assume that c^l. 
Therefore, in the analysis of oil exploration data we 
take c to be the solution of (12) if (12) has a solution and 
if that solution is greater than or equal to 1; otherwise 
c is taken to be 1.

The unconditional joint density of the areas 
exhausted by the time that "a" of the effective search 
solid has been exhausted is

klck
J 

77
h(a v . . ,ak ) =

and its integral over all («!,.., ak ) is the probability of 
exactly k discoveries. If one attempts to find maximum 
likelihood estimates simultaneously for "N" and "c," 
the maximum can occur at Af = + °° and c = 0. To avoid 
this, it is necessary to include in the model the condi­ 
tion that the point targets in the effective search solid 
cannot be too close together because they must corres­ 
pond to nonoverlapping ellipses in the effective basin. 
Because this condition is difficult to work with, it is 
decided to estimate the efficiency first by the method 
described above and then to choose ft to maximize JV

k
(l-d-ary ((l-a^f ~fe , which meanstf is the smallest 
integer such that

RESULTS OF SIMULATION

A simulation study was conducted to investigate the 
behavior of the estimated effective basin size. The well 
locations were chosen randomly within the basin, and 
the basin size was estimated using equation (11). Cir­ 
cular disks were assumed; the ratio of the area of a 
single target to the basin size was 1 to 2,500. The re­ 
sults for three replications are presented in figure 1; 
basin size estimates are plotted for every tenth well. 
The estimated basin size is infinite until disks overlap.

In order to study the distribution of c as estimated by 
equation (12), a simulation experiment was conducted 
for various values of c and N. Estimates for c were 
calculated at 0.1, 0.2,. . . , 0.9 fraction of the area 
searched, given that at least one target had been dis­ 
covered. The median efficiencies from these simula­ 
tions are presented in table 1. Each simulation was 
replicated 100 times; however, the median estimates 
corresponding to c=2 or c=4 sometimes are based on 
fewer replications when the area searched is less than 
0.4 since at least one discovery is required for an esti­ 
mate. The estimated efficiency was set to zero when 
discoveries were present, but no solution to (12)

TABLE 1.—Estimated median efficiencies

N> k -I.

0.1 _
.2 ___
.3 _
.4 _
.5 _
.6 _
7

.8 _

.9 __

0.1 _
.2 _ _
.3 _
.4 _
.5 _
.6 ___
7

.8 ___

.9 _

0.1 _
.2
.3 _
.4
.5 _
.6 _
7

.8

.9 ._

Efficiency = 1.0

Fraction of Medians 
area searched N = 50

.__ — ___ _ ________ 0.33
.88

1.17
. __ ____________________ .83
_ ___ _____________ _ ___ .97
— _ _____ _ ___ - __ .99
_________________________ .94
_________________________ .92
_ _ _ _______ 1.01

Efficiency = 2.0

Fraction of Medians 
area searched N = 20

_ ______ _ ___ _____ _ 1.27
_______ ___ — ___ ____ 1.33
— _ _ _ _ ________ ___ 2.70
_ __ _ _ _ _ 2.08
_ _ _ _ 1.95
_ _ _ _ 2.02
________ ____ ___ __ ___ 2.17
— — _____ — _ ___ - 2.16
____ _ _ ____ ___ ____ 2.05

Efficiency = 4.0

Fraction of Medians 
area searched N = 3

— _ _____ . _______ 5.30
— _ . ___________ 3.31

4 4S
3.80

. ___ _____ ____ __ 4.02
4.25

_ _____ _ __ — _ _ 4.19
4.31
4.33

Medians
N = 70

0.00
.45

1.12
.94
.96

1.13
1.06
1.03
1.01

Medians
N = 30

2.30
1.83
2.36
2.17
2.11
1.91
2.01
1.98
1 97

Medians
N = 5

6.18
3.64
4.21
4.39
3.84
4.21
4.41
4.35
4.37

Medians
N = 90

0.82
1.07
.92

1.08
1.04
1.04
1.00
1.10
1.03

Medians
N = 40

0.00
1.95
1.81
2.16
2.20
2.02
1.98
2.02
2.03

Medians
N = 10

3.22
4.73
4.29
4.47
4.32
4.53
4.52
4.55
4.54
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existed. The fractions of the area searched were gen­ 
erated from 1 — (1 — Uj) l/c where a, is uniform (0,1), 
i = l,2, . . . ,N. Smaller values ofN were associated with 
larger c's because in petroleum exploration the larger, 
less numerous deposits tend to be found with higher 
efficiency.
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PETROLEUM-RESOURCE APPRAISAL AND DISCOVERY RATE
FORECASTING IN PARTIALLY EXPLORED REGIONS—

AN APPLICATION TO SUPPLY MODELING

By E. D. ATTANASI, L. J. DREW, and J. H. SCHUENEMEYER

ABSTRACT

This study examines the temporal properties and determinants of 
petroleum exploration for firms operating in the Denver basin. Ex­ 
pectations associated with the favorability of a specific area are 
modeled by using distributed lag proxy variables (of previous discov­ 
eries) and predictions from a discovery process model. In the second 
part of the study, a discovery process model is linked with a behav­ 
ioral well-drilling model in order to predict the supply of new re­ 
serves.

Results of the study indicate that the positive effects of new discov­ 
eries on drilling increase for several periods and then diminish to 
zero within 2% years after the deposit discovery date. Tests of alter­ 
native specifications of the argument of the distributed lag function 
using alternative minimum size classes of deposits produced little 
change in the model's explanatory power. This result suggests that, 
once an exploration play is underway, favorable operator expecta­ 
tions are sustained by the quantity of oil found per time period rather 
than by the discovery of specific size deposits. When predictions of 
the value of undiscovered deposits (generated from a discovery proc­ 
ess model) were substituted for the expectations variable in models 
used to explain exploration effort, operator behavior was found to be 
consistent with these predictions. This result suggests that 
operators, on the average, were efficiently using information con­ 
tained in the discovery history of the basin in carrying out their 
exploration plans. Comparison of the two approaches to modeling 
unobservable operator expectations indicates that the two models 
produced very similar results. The integration of the behavioral 
well-drilling model and discovery process model to predict the ad­ 
ditions to reserves per unit time was successful only when the quar­ 
terly predictions were aggregated to annual values. The accuracy of 
the aggregated predictions was also found to be reasonably robust to 
errors in predictions from the behavioral well-drilling equation.

INTRODUCTION

Interest in the state of the U.S. domestic petroleum 
industry has resulted in a critical examination of the 
usefulness of current economic models. There is some 
question as to whether these models can provide useful 
information aboout petroleum supply availability, 
supply price sensitivity, and the effects of alternative 
policy options on future supply possibilities. The per­ 
formance of current models in terms of predicting fu­ 
ture oil and gas discoveries and supply has thus far 
been disappointing (MacAvoy and Pindyck, 1975). The 
poor performance of these models may be caused in

part by their almost universal reliance on aggregated 
data, which obscures the effects of physical exhaustion 
on the supply response.

Although a major reason for constructing empirical 
economic models is to predict price responsiveness of 
future supply, the historical data upon which current 
models are based generally do not contain sufficient 
price variation to accurately predict future price- 
supply responses within a region. The price variations 
present in available data relate to the quality of crude 
oil rather than to the incremental costs of exploration 
and development of individual deposits. Moreover, the 
effect of price changes on expected supplies is 
moderated by the level of resource depletion for a par­ 
ticular basin. Because of the potential interaction be­ 
tween price and resource depletion, the use of highly 
aggregated data will likely lead to spurious correlation 
between changes in supply and incremental price 
changes. Very few attempts have been made to model 
economic behavior at the level of the exploration play. 
In this report, an exploration play is defined as the 
increase in wildcat drilling attributed to and following 
the discovery of a significant (large) deposit in a forma­ 
tion that was not known to yield significant amounts of 
oil. Although the major obstacle to modeling has been 
the lack of basin-specific exploration data, many work­ 
ers believe that field behavior is too erratic or unsys­ 
tematic to model successfully.

This study has two parts. The first discusses the 
temporal properties of operators' exploration behavior 
for the Denver basin. In particular, the field behavior 
of operators in terms of responses (wildcat drilling and 
drilling expenditures) to new discoveries is examined 
and then compared with results from another basin. 
Properties of operators' behavior include the duration 
of the response and the nature of new deposits that 
must be discovered in order to sustain favorable 
operator expectations associated with a given area. 
The stochastic process characterizing the temporal dis­ 
tribution of previous discoveries is used as a basis for 
modeling operator expectations associated with the

Cl
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value of deposits remaining to be found. The stochastic 
nature of this scheme is compared with the process 
characterizing the predictions of the value of remain­ 
ing deposits calculated with discovery process models 
similar to the ones proposed by Arps and Roberts 
(1958) and Drew, Schuenemeyer, and Root (1980).

In the second part of the study, the discovery process 
model is linked with the drilling model in a recursive 
system of equations in order to predict the supply of 
new reserves. Whereas the purpose of the behavioral 
drilling model is to explain operator action within a 
given time period, the discovery process model predicts 
the number and size distribution of new discoveries as 
a function of the number of wells drilled. By linking 
the two models, we can predict the quantity of new 
reserves discovered per unit time. These predictions 
are compared to the actual sequence of discoveries.

PREVIOUS STUDIES

Industry-level petroleum supply models have histor­ 
ically treated exploration as a process using wildcat 
wells that generates proved reserves. As such, little 
effort was devoted to formulating testable behavioral 
hypotheses or extending the theory of the firm to in­ 
clude the exploration function. In early models, no con­ 
sideration was given to integrating the role of the ini­ 
tial resource base into the analysis. Because of geologic 
differences from area to area and very limited histori­ 
cal data series, the results of those industry-level 
studies have been somewhat disappointing. Data have 
been aggregated to the extent that significant behav­ 
ioral and physical relations are concealed by the model 
specifications. Moreover, although almost all of these 
models have attempted to determine the price sensitiv­ 
ity of exploration and petroleum supply, price has 
varied little within specific geologic regions during the 
time periods chosen for analysis. Alternatively, 
engineering-type process models (National Petroleum 
Council, 1972; Federal Energy Administration, 1974; 
1976) designed to forecast oil and gas supply have 
frequently reduced exploration behavior to mechanical 
rules, assuming, for example, that firms' exploration 
expenditures are a certain percent of the previous 
period's net profits. Rather than investigating each of 
the models in detail, the following discussion focuses 
on motivation and differences in approach.

Perhaps the first widely publicized econometric 
study of oil and gas exploration was by Fisher (1964). 
Fisher, who noted that the supply of exploratory drill­ 
ing differs greatly from the supply of new discoveries, 
used a three-equation model to attempt to explain (1) 
the annual number of wildcat wells drilled, (2) success 
ratio (proportion of wildcat wells drilled which resulted

in a discovery), and (3) the average size of the discov­ 
ery. Fisher distinguished between exploration at the 
intensive and extensive margins. Exploration at the 
extensive margin yields discoveries that are charac­ 
terized by a relatively low frequency and a large size, 
whereas exploration at the intensive margin yields 
relatively small discoveries that occur with greater 
frequency. Consequently, Fisher specified both the suc­ 
cess ratio and the discovery size as a function of eco­ 
nomic variables and also asserted that short-term reac­ 
tion to increases in price results in a shift of explora­ 
tion to the intensive margin.

In the three-equation model, the number of explo­ 
ratory wells drilled is specified as a function of the 
price of oil, geophysical crew time, and lagged values of 
the average size of oil and gas discoveries, depth, the 
success ratio, and regional dummy variables. The 
equation for the success ratio includes the price of oil, 
geophysical crew time, and lagged values of the success 
ratio, depth, and average size of oil and gas discoveries. 
For the final equation, the average-size oil discovery is 
specified as a function of the price of oil and the previ­ 
ous period's values of the average size of oil and gas 
discoveries and the success ratio. In order to increase 
the number of degrees of freedom, short-time series 
data for large, geologically heterogeneous areas were 
pooled. Intercept dummy variables were included to 
account for differences in individual areas. Although 
the model specification was not derived from a firm's 
decision process, the explanatory power of the esti­ 
mated equations was adequate. For predictive pur­ 
poses, however, the price responsiveness of the new 
discoveries is unlikely to be the same for all the areas 
from which the data were taken. Furthermore, varia­ 
tions in the historical price data used by Fisher were 
the result of differences in the quality of the oil rather 
than incremental production costs. Erickson and 
Spann (1971), working to model the supply of natural 
gas, elaborated on Fisher's original formulation by in­ 
cluding an equation for the average annual size of gas 
discoveries. The functional form of the gas supply 
model is similar to the functional forms used by Fisher 
in modeling oil supply.

MacAvoy and Pindyck (1973, 1975) modeled and in­ 
tegrated the components of natural gas demand and 
supply. Like Fisher, they modeled the supply of new 
discoveries by predicting the number of wells drilled, 
success ratios for oil and gas exploration, and the ex­ 
pected size of oil and gas discoveries for individual Pe­ 
troleum Administration Districts. The supply of re­ 
serves may be calculated from the success ratio, wells 
drilled, and expected size. Both the success ratio and 
the expected discovery size represent (decline) extrapo­ 
lations from a calculated reference size and success
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ratio. These variables are also sensitive to field prices 
and signify whether firms are operating at the inten­ 
sive or extensive margins. The well-drilling equation is 
based upon the expected returns and the variance of 
returns which are, in turn, calculated from the ex­ 
pected size of discovery and the success ratio. In par­ 
ticular, the annual number of wells drilled is a function 
of the petroleum district dummy variables, expected 
returns, the variance of returns, and a drilling cost 
index. Although recent revisions (Pindyck, 1978) of the 
model are logically similar to previous versions, the 
success ratio and expected size of oil discoveries were 
made independent of price and dependent upon re­ 
gional physical characteristics. These revisions led to ( 
reductions in previous estimates of the price respon- 
siveness of new oil discoveries.

Two other approaches to modeling new discoveries 
were made by Khazzoom (1971) and Epple (1975). 
Khazzoom (1971) estimated the volume of gas discov­ 
ered from the two-period ceiling averages for the price 
of natural gas, price of crude oil, price of natural gas 
liquids, and previous period's volume of gas discovered. 
The mgdel does not explicitly include a variable associ­ 
ated with the exhaustion of undiscovered deposits. 
Using a unique approach, Epple (1975) considered ex­ 
ploration as a production process that used wells and 
oil-bearing land as inputs. Exhaustion of the oil- 
bearing resource is explicitly considered to be repre­ 
sented by the productivity and input cost of oil-bearing 
land. The model attempts to predict the value of new 
discoveries of crude oil and natural gas by using a joint 
production function. Specifically, Epple assumes a form 
for the production function, 1 then derives the firm's op­ 
timizing conditions under the assumption that it 
maximizes the net present value of exploration effort. 
Parameters of the oil-bearing land supply function are 
estimated from aggregated U.S. oil and gas exploration 
statistics. Although the analytical approach that Epple 
takes is novel and some aspects of resource exhaustion 
are considered, the use of aggregated data and the ab­ 
sence of detail relating to the spatial distribution of 
deposits restrict the applicabilty of the model.

Along similar lines, Uhler (1976) developed a 
stochastic production function for the discovery of new 
petroleum reserves. The marginal exploration cost 
function, derived from the production function, in­ 
cludes the following variables: an index of field knowl­ 
edge, an index of physical exhaustion, and wells 
drilled. One distinguishing feature of the analysis is 
that it considers a disaggregated area. Because the 
study concentrates on the marginal cost of new discov-

'The supply of oil-bearing land is specified asL = R e™ where R is unit rent, w is past 
exploratory effort; with r > O and B > O and defined as estimated parameters and e is the 
Naperian constant.

cries, it does not attempt to explain the behavioral de­ 
terminants of wildcat drilling.

Cox and Wright (1976) abstracted data from the ex­ 
ploration process by considering all drilling ex­ 
penditures as investment in reserves, which are 
treated as inputs in the production of crude oil. The 
objective of their study was to link investment in re­ 
serves to government policies such as import quotas, 
prorationing, and special income tax provisions. Al­ 
though the empirical results are impressive, the au­ 
thors do not consider exploration investment apart 
from reservoir development investment. Furthermore, 
they do not consider the influence of uncertainty or 
resource exhaustion in their investment decision 
models.

In summary, economists appear to have taken two 
approaches to modeling firm exploration behavior. For 
the first approach, the number of prospects, labor, and 
capital services serve as inputs to the petroleum re­ 
serve production process called exploration. For the 
second, reserves are considered an input to the crude 
oil production process. Exploration is then regarded as 
similar to firm investment in physical capital equip­ 
ment. To some extent, both approaches are correct, 
depending upon the nature of the firm under considera­ 
tion. Firms engaged primarily in exploration regard 
discovered reserves as the end product, whereas verti­ 
cally integrated firms might view reserves as inputs. 
Exploration can be regarded as an investment or input 
in the production of an inventory of reserves that re­ 
sults in crude oil production. As an intermediate prod­ 
uct, reserves will undergo additional modification in 
the production process in order to generate final prod­ 
ucts.

OPERATOR BEHAVIOR AT THE FIELD LEVEL

With a few exceptions, the studies just reviewed 
have been concerned with modeling exploration behav­ 
ior when data are highly aggregated. Frequently, data 
limitations necessitate such spatial and temporal 
aggregation. However, the testable behavioral hypoth­ 
eses generated from these models are, in general, quite 
limited. In order to examine operator behavior, in more 
detail, data specific to the Denver basin are used in this 
study. In this area deposits were usually found in a 
single formation; the only exploration play that oc­ 
curred during te period examined was stratigraphic in 
nature. Because the initial discoveries were made ear­ 
lier than the beginning of the historical time series of 
data used in this study, the behavior examined relates 
to exploration at the intensive margin. With the excep­ 
tion of the Union Pacific Railroad acreage (Drew and 
others, 1980), mineral rights were regularly bought 
and sold. The following discussion concerns the explo-
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ration decisionmaking of firms, specifically, how they 
formulate and respond to expectations of undiscovered 
deposits remaining in the basin.

FIRM BEHAVIOR

Investment in production of petroleum reserves may 
take several forms. Additional reserves can be devel­ 
oped by extension drilling (leading to revised estimates 
of reserves), investment in improved recovery methods 
(enhanced recovery) from existing reservoirs, and 
wildcat drilling for the discovery of new deposits. 
Within the individual firm there are tradeoffs in costs 
that must be considered when using any one of these 
three sources of additional petroleum (White and 
others, 1975). For example, development drilling can 
be done with borrowed funds, whereas only equity cap­ 
ital can be used to pay for exploratory drilling.

The theory of firm behavior under production uncer­ 
tainty has only recently been treated extensively in the 
economic literature (see Fama, 1972; Leland, 1974). If 
it is assumed that firm managers attempt to maximize 
the net present value of the firm (perhaps in terms of 
outstanding capital stock), a capital market valuation 
model might be posited. For purposes of explaining 
overall firm exploration decisions, such a model may be 
particularly applicable because generally only equity 
capital is used for exploration expenditures. Among 
the alternatives available to the firm for obtaining ad­ 
ditional reserves—that is, wildcat drilling, extension 
drilling, and enhanced recovery—wildcat drilling 
clearly is the most uncertain. Firms commonly restrict 
their exploration activities to a small set of areas 
where they have had previous experience or where the 
firm plans a prolonged exploration program. For a 
given area, early exploration investment can be viewed 
as investment in the current set of prospects that pro­ 
vides additional information about other prospects in 
the area. The decision regarding when and in what 
areas to initiate an exploration program and at what 
times to allocate expenditures between exploration, ex­ 
tensions, and enhanced recovery are made at the firm 
level. However, the decision on when and where to drill 
strategic prospects in an area is frequently the respon­ 
sibility of the field managers (Kaufman, 1903). This 
description of the optimizing process of a firm is non­ 
technical. For a technical discussion of the optimal ex­ 
ploration, production, and capital investment policy 
when the firm operates in geologically diverse regions, 
see Attanasi (1978).

At the field level, the operator is faced with the prob­ 
lem of allocating a fixed amount of funds to a number of 
prospects over a given planning period. For larger 
firms operating in many areas, a marginal amount of 
exploration funds might be reallocated within the typi­

cal planning period. The optimal search policy for a 
given set of prospects may be expressed as a function of 
the expected profit, marginal opportunity costs, and 
expectations associated with the size (and spatial) dis­ 
tribution of remaining deposits (Attanasi, 1978). Field 
expectations are formed when operators make explora­ 
tion decisions based upon unknown or uncertain pa­ 
rameters. For the shortrun model considered here, un- 
observable operator field expectations appear to be the 
most difficult components of the determinants of explo­ 
ration to measure.

FORMATION OF EXPECTATIONS

Expectations are formed when economic agents (firm 
managers or consumers) are required to make deci­ 
sions based upon the unknown value of a particular 
variable. The expectations or predictions that are 
formed are then used in the decision process. In tests of 
the theory of the formation of expectations in economic 
models, the modeler may attempt to gather data di­ 
rectly from economic decisionmakers or construct a 
prediction scheme based upon observable characteris­ 
tics of the specific decision problem such as market 
prices or output. Traditionally, these prediction 
schemes, although typically rather simple, rely almost 
entirely upon past values of the variables to be 
forecasted. A serious limitation of nearly all the exist­ 
ing expectations models is that their estimates are 
formed without consideration of the decisionmaker's 
criterion function. Embodied in the decisionmaker's 
criterion function are attitudes toward risk and conse­ 
quences of under- and over-estimating the value of the 
uncertain variable. Originally, expectations models 
were developed in connection with agricultural price 
supply responses (Ezekiel, 1938; Nerlove, 1958). Farm­ 
ers must commit land and labor to the production of 
specific crops before the market price of the crop is 
known. The farmer may base his predictions of the 
current period's price on the previous period's realized 
price. In particular, suppose pf is the expectations var­ 
iable and pt is the observed value at time t. The static 
expectations formulation is defined as

pf = Pt-i- (1)

If the current period's expectation is a weighted combi­ 
nation of the realization and expectation of the previ­ 
ous period, that is,

pf = pf_! + a (p,-i - pf_j) 0 < a < 1, (2)

then expectations are said to be formed adaptively. In 
the equation above, a is the coefficient of adaptation 
and controls the degree to which expectations will con-
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form to the previous period's realization. Expectations 
are said to be regressive if

pf= (3)

with a,> a2 > a3 the weights are positive and approach 
zeros with the passage of time. Alternatively, expecta­ 
tions are extrapolative, if

and
pf =

p =

•>t-\ - Pr-a) + a-z (Pt-2 ~ P^-a) + • •

-i + (a2 -ai)pV2 + (as-«i)A-3 + • • • -,(4b)

where the weights a, are also positive and decline. In 
terms of the final coefficients of the lagged terms of pt, 
the coefficients (equation 4b) are negative and ap­ 
proach zero. Turnovsky (1969) has shown how a 
Bayesian updating scheme for uncertain values of the 
distribution parameters of the stochastic decision vari­ 
ables results in a general expectations formation 
scheme yielding as special cases static, extrapolative, 
and adaptive expectations.

As suggested by these formulations and others fre­ 
quently found in the literature, the estimated form of 
the unobservable expectations variable is based on the 
autoregressive process2 of the historical realizations of 
the decision variable. In fact, a relatively unrestrictive 
definition of rational expectations is that the generated 
predictions and realizations follow the same autore­ 
gressive scheme. A reason for this definition is that 
autoregressive forecasting schemes provide optimal 
predictors for a wide range of stochastic processes. 
However, these predictors are still constructed without 
recourse to the decisionmaker's criterion function. 
Moreover, the criterion functions for the prediction and 
decision problems will, in general, differ because the 
consequences of errors in the estimates differ. Distrib­ 
uted lag models are frequently applied when the unob­ 
servable expectations variable is approximated by the 
autoregressive formulation of the historical realiza­ 
tions of the variable of interest. If it is assumed that 
the decisionmakers have knowledge of the underlying 
stochastic structure that generates the time series of 
the variable to be forecasted, then the distributed lag 
proxies are equivalent to calculating the conditional 
expected value of the uncertain variable (Pesando, 
1976).

DISTRIBUTED LAG MODELS

Unobservable expectations variables are frequently 
modeled with a distributed lag function of the histori-

2 The term autoregressive process used here refers to a model that can be expressed as a 
finite linear aggregate of previous values of the process. The nature of the stochastic process 
might correspond to an autoregressive model, moving average model, or combination of the 
two models. For more detailed definitions, see Box and Jenkins (1970, p. 7-11).

cal realizations of the variable of interest. Simply, dis­ 
tributed lag models provide the basis for analyzing the 
temporal response of the dependent variable (yt ) to a 
change in a specific independent variable (xt ). In par­ 
ticular for any given T, it is assumed that

yt = c + W(Xt +WiXt-i + , . . . , + wTxt-T + et, (5) 

where dyt = w . j = o, 1, . . . , T

and et is a stochastic error term.
Two fundamental problems arise if one were simply 

to apply ordinary least squares to equation (5) to esti­ 
mate all H/S. First, if T is large, there may be too many 
parameters, leaving few degrees of freedom to make 
statistical inferences about parameter values with any 
degree of confidence. Second, there is likely to be a high 
degree of collinearity among the lagged values of the 
independent variables. Consequently, in order to con­ 
serve available degrees of freedom and improve effi­ 
ciency of the statistical estimates, a lag generating 
function is chosen to correspond to a given time profile 
that characterizes the response of the dependent vari­ 
able to changes in a particular independent variable. 
By assuming a specific analytical form for the generat­ 
ing function, the number of parameters required to be 
estimated can be made quite small. For example, sup­ 
pose the decisonmaker's expectation xf is adjusted 
adaptively as an observation of a realization xt -i is 
made, that is,

•V'l* __ «i
•A'f J (6)

where 0 < a < 1. If X is defined by X = 1— a, then the 
expectations variable may be calculated by the follow­ 
ing equations:

x* = (1-X) Xt-i
xf = (1- (7)

Hence, given the derived structure, a single parameter 
X can be used to generate values of the unobservable 
expectations variable from the historical data associ­ 
ated with xt .,. Suppose it is assumed that

= * (8)

Then recursively substituting (7) into (8) and the lag­ 
ged form of (8) into the resulting equation, the estima­ 
tion form of equation (8) is

yt =(l-k)xt- l (9)
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or using the lag operator L the equation is

y,=
(1-XL)

Consequently, by deriving the specific form of the lag 
generating function, the estimation of the distributed 
lag structure of the model can be reduced to a small 
number of parameters.

Jorgenson (1966) has shown that any arbitrary lag 
function can be approximated by the rational form3

=
B(L)

(10)

m
where A(L) =2

i = 0
B(L) =

A rational lag function means that the function can be 
expressed as the ratio of two polynomial (lag) func­ 
tions. That is, any finite or infinite response function 
can be approximated by the rational form (10). For 
example, a form of the geometric function results when 
A(L) = a I andB(L) = 1 - \L, that is,

= («/)
(1-XL)

(11)

Alternatively, by specifying the denominator in (10) to 
be equal to a constant (unity), a finite distributed lag 
function results. In general B(L) of higher degree than 
2 or 3 might be difficult to identify uniquely. The 
statistical methods used to estimate such models are 
complex because the estimation routines are highly 
nonlinear. In addition, the distribution of the descrip­ 
tive statistics are known only for large samples 
(Dhrymes, 1971).

In terms of temporal behavior, the implications of 
particular distributed lag schemes are not always ob­ 
vious from the estimated structural equation form. For 
model comparison and selection, certain standard 
properties of the implied function, which are more in­ 
tuitively interpretable, are frequently considered. Two 
such properties are the normalized time profile of the 
distributed lag response function and the average lag 
length. The time profile represents the temporal distri­ 
bution of the effects on the dependent variable of a unit 
change in the independent variable. The general shape 
of the time profile indicates how rapidly and in what 
direction a change in the independent variable affects 
the dependent variable. Changes in the units of meas­ 
urement of either the dependent or independent vari-

3The general form of the rational distributed lag function may be derived from an exten­ 
sion of the adaptive expectations hypothesis (see Dhrymes, 1971).

ables affect the shape of the time profile. Consequently, 
when the time profiles for alternative distributed lag 
models are compared, they must be taken to use the 
same units of measurement. The time profile may ex­ 
hibit a variety of forms (fig. 1). Some common ones 
include an exponentially decaying function, an in­ 
verted "V" shape or a function with weights oscillating 
between positive and negative values. In some cases, 
the general shape of the time profile can be inferred 
from the functional form of the distributed lag model. 
However, the time profile weights can always be calcu­ 
lated using the estimated function and tracing the ef­ 
fects on the dependent variable of a unit change in the 
specific independent variable.

Another property of distributed lag functions that 
may serve as a basis for comparison is the average lag 
for an n period lag function, which is calculated as

n

e = t=Q twt ; 
n wt

(12)

where t is the period subscript and w is the associated 
weight. The average lag 0 turns out to be a simple 
weighted average of the time periods where the 
weighting is proportional to the time profile weights. 
The average lag reflects how the various values of the 
time profile weights are temporally distributed. Values 
of the average lag must be interpreted in relative 
terms. That is, larger values of 0 indicate that much of 
the distributed lag effect is felt at larger values of t, 
and smaller values of 0 indicate that the weights asso­ 
ciated with earlier lag periods are relatively larger 
than for the later ones.

The time profile and average lag represent prop­ 
erties of the distributed lag model that are easily in­ 
terpreted. Frequently, an individual researcher may 
have subjective prior knowledge of the form for the 
time profile and attempt to use this prior knowledge to 
evaluate the empirical model. For example, suppose a 
distributed lag model is estimated representing the ef­ 
fects of increases in advertising on product sales. One 
might reasonably expect the time profile to indicate the 
effect of a one-time increase in advertising to be expo­ 
nentially decaying, but it would be unreasonable to 
expect the function to indicate explosive or 
monotonically increasing effects. The time profile pro­ 
vides a means whereby the estimated distributed lag 
model can be evaluated for consistency with expected 
economic behavior.

OPERATOR DRILLING BEHAVIOR
Assuming the type of decentralized decisionmaking 

that was previously described, the field manager's re-
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FIGURE 1.—Shapes of normalized time profiles for weights associated 
with values of the lag variable. Analytical specifications of the 
distributed lag functions are adjacent to each of the time profiles 
with L defined as the lag operator.

source allocation problem might then be specified as a 
sequential decision or adaptive control problem. With­ 
out going into an involved mathematical derivation, 
the optimal shortrun search strategy might be 
specified as a function of profit expectations, perceived 
field risks, and expected opportunity costs of foregone 
alternatives. Field managers are assumed to use avail­ 
able information to predict the spatial and size distri­ 
bution of undiscovered deposits. The optimal search ef­ 
fort might be specified as a function of expected profit ir 
and expectations associated with deposits left to be 
found x* • Depending on the nature of the area, a vari­ 
able k might also be included to index the current state 
of field knowledge relating to the original distribution 
of deposits and extent of physical exhaustion. The op­ 
timal search effort may be specified by the following 
function:

yt=f(i*,Xi,kt\ (13)

To estimate a specific functional form of equation 
(13), the variables Jrt and kt must be defined. It seems 
reasonable to assume that there is a lag between the

firm's exploration allocation decisions across regions 
and the reporting of profits from which irt is assumed to 
be estimated. In the empirical models to be presented, 
the expected profits variable was computed as the lag­ 
ged value of returns per wildcat well. Returns per ex­ 
ploratory well were calculated by multiplying the 
quantity of the dollar value of oil found per successful 
wildcat less the cost of the well by the success ratio. 
This variable was assumed to reflect the general level 
of a basin's exploration profitability. The variable kt is 
assumed to reflect the relative degree of knowledge 
operators possess about a particular set of targets and 
the extent of physical exhaustion. This relative index 
of experience and exhaustion k was calculated on the 
basis of the weighted average of the cumulative 
number of wells drilled in a specific target area over 
the previous three periods. 4 The index as defined would 
have greater significance and intuitive appeal if the 
area under consideration exhibited several plays or 
target formations. Because a large block of acreage in 
the Denver basin was restricted from exploration, the 
index was calculated on the basis of areal extent with­ 
held rather than on the basis of target formation (see 
footnote 4). The index specified in this fashion captures 
the effects of sampling deposits without replacement 
and also will increase as economically exploitable de­ 
posits are exhausted. The wildcat drilling data and re­ 
serves data were obtained from the Well History Con­ 
trol File of Petroleum Information, Inc. Drilling costs 
were calculated from various annual issues of the Joint 
Association Survey of the U.S. Oil and Gas Producing 
Industry (JAS) (American Petroleum Institute, 1953, 
1955-56, 1959-73). The study area was partitioned 
into 88 smaller units (of 625 mi2 or 1,619 km2) for pur­ 
poses of assigning target depths for wildcat wells 
drilled within each cell. Well costs were calculated 
from the inferred target depth, and costs per foot were 
taken from the JAS annual summaries for Colorado. 
Although some natural gas deposits were found, 
operators were searching predominantly for new oil 
deposits. The oil found was of a relatively uniform 
quality. During the period from 1949 to 1972, prices 
were relatively stable and ranged from $2.63 per barrel 
to $3.46 per barrel. However, during 1973 prices for 
new oil increased to over $8.90 per barrel. Initially, the 
general estimated form of equation (13) was

+ ykt +€t. (14)

4If P, is the proportion of wells drilled in the i"1 formation or sub basin at time t and C, is 
the cumulative number of wells drilled in the i th formation or subarea, then the experience-

m 3 
exhaustion index is defined by k, = 2 O, • U/3K 2 p'-t). The Denver ba-

i=l j=l
sin had two subareas and a single producing formation. The areas were partitioned into 
acreage excluded from exploration and held by the Union Pacific Railroad; other acreage 
corresponded to the rest of the basin which was open for exploration.
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where f(Dt) represents the general lag structure and x*< 
= f(Dt). The variable yt represents search effort ex­ 
pended as measured by either wildcat wells drilled or 
estimated drilling expenditures, Trt -z is the expected 
value of returns per wildcat well lagged two periods, 
Dt is the value of new discoveries equal to or greater 
than a given minimum size class of deposit for a 
specific time period, and kt is the index of field experi­ 
ence described earlier. The lag function of the dollar 
value of the oil found in certain size classes of deposits 
per time period is assumed to reflect changes in the 
operator's expectations regarding the distribution of 
deposits remaining to be found in the basin. The vari­ 
able Dt was defined with respect to a minimum size 
class of deposits for two reasons: Larger deposits gen­ 
erally have lower production costs; moreover, the oc­ 
currence of larger deposits is frequently taken to be 
indicative of the presence of deposits of a similar size. 

Estimated empirical models are presented in the fol­ 
lowing two sections. In the first section, alternative 
forms of the lag function were tested; the final model 
took the form of a finite lag function with lag weights 
constrained to lie in a second-order polynomial. Infer­ 
ences about operator behavior are made from the esti­ 
mated models. On the basis of these results, inferences 
about operator behavior observed in the Denver basin 
are compared with inferences about behavior observed 
in the Powder River basin (Attanasi and Drew, 1977). 
In the next section, the estimated quarterly model is 
compared to the model estimated from semiannual ob­ 
servations for consistency in interpretation. The dis­ 
covery process model similar to the model presented in 
Arps and Roberts (1958) is then used to calculate the 
value of deposits remaining to be found. The perfor­ 
mance of this type of model and its apparent efficiency 
in the use of information contained in the drilling data 
suggest that the model predictions are equivalent to 
the expected value of the uncertain variable. A more 
restrictive definition of a rational expectation is that it 
efficiently uses all available information about the un­ 
certain variable. It would therefore be useful to com­ 
pare the statistical properties of the ad hoc distributed 
lag model with the performance of an empirical drill­ 
ing model that uses the (rational) predictions of the 
value of deposits remaining to be found calculated with 
the discovery process model.

EMPIRICAL RESULTS

Several forms of the distributed lag function f(Dt ) 
were fit to the historical drilling data in order to arrive 
at a reasonable description of the discovery process. In 
evaluating alternative empirical models, several 
criteria are frequently applied. The model structure 
and estimated coefficients should first be consistent

with economic theory. Other criteria relate to the stan­ 
dard statistics that describe the quality of the fit of the 
model, that is, coefficient "t" statistics, coefficient of 
determination and the standard error of the regression. 
Finally, the predictive performance of the model can be 
examined by using part of the historical sample to es­ 
timate the model and the remainder of the sample to 
compare model forecasts with actual sample values.

The specific lag forms that were tested included the 
geometric, second-order rational, and finite polynomial 
distributed lag functions. The geometric lag structure 
is derivable if it is assumed that expectations are 
formed adaptively.5 If, in addition to an adaptive ex­ 
pectations hypothesis, it is assumed that reactions to 
changes in expectations exhibit some inertia—that is, 
only a partial immediate adjustment (see Johnston, 
1972, p. 302- 303)6—a second-order rational lag model 
results. Motivation for the finite polynomial lag func­ 
tion was not based on any specific set of assumptions 
that explain the process by which expectations are 
formed. However, the empirical results for the finite 
lag distribution will provide a useful comparison to the 
results obtained for alternative infinite lag forms, that 
is, the geometric and second-order rational functions.' 
An infinite lag distribution means that the effect on 
the dependent variable of a change in the lag variable 
continues over an infinite number of time periods.

The parameters for the geometric and second-order 
lag functions were obtained using a nonlinear iterative 
regression technique that yields maximum likelihood 
estimates (Pierce, 1971). For the initial test runs, Dt 
was defined as the aggregate value of discoveries per 
time period of deposits of at least 500,000 barrels of 
reserves. Prior to carrying out the estimation proce­ 
dures, the data were tested for seasonal variations, 
which were removed from the quarterly data using the 
Census X-11Q procedures (Shiskin and others, 1967). 
Table 1 presents the parameters estimates for models 
based on semiannual and quarterly observations. Simi­ 
lar results were obtained when Tft-\ was used in place of 
77f_ 2 and when alternative assumptions were imposed 
on the error term. Comparisons of the coefficients of the 
lag terms associated with the models estimated from

5For this derivation see the preceding discussion and Attanasi and Drew (1977, p. 57), The 
estimated form of the geometric lag function was

-+ ftir,_.2 + yk,+ft ,
(1-XL)

where y,, Dt , J7,_2, *, were defined earlier and ft, ft, X, ft, and y are estimated coefficients. L 
is the lag operator. The stochastic component of the model is embodied in «, and was 
permitted to have autoregressive and moving average components.

"The second-order rational lag function that was estimated took the following form:
y, = ft + (1-X,L+XZL2)

+«„

where the variables y,,D,, 7r,_2, k, were denned earlier and the estimated coefficients are ft, 
ft. ft, *», *«. and y. L is the lag operator. The error term e, was assumed to have autoregres­ 
sive and moving average components.



AN APPLICATION TO SUPPLY MODELING C9

TABLE 1.—Estimated coefficients of infinite lag models

[Numbers in parentheses are 'V" statistics, and A2 is the coefficient of determination]

Geometric: 
Drilling:

Semiannual _.-488.0 0.00102 0.852
(4.1) (8.2) (52.5) 

Quarterly____--17.5 .00039 .899
(1.4) (11.7) (100.2) 

Drilling expenditures:
Semiannual__-2768.0 .00450 .881

(4.6) (7.9) (68.8)
Quarterly_____-40.4 .00161 .923 

(.7) (12.2) (130.6)

-0.0173 0.066 0.735
(.8) (5.8)

-.0052 .0098 .806
(1.0) (6.7)

-.0690 .320
(.7) (5.7)

-.0241 .0258
(1.0) (3.6)

.766

.830

Second order: 
Rational Lag 

Drilling: 
Semiannual

Quarterly

-—-394.4 0.00064 
(3.5X3.9) 

-IB 3 00019
(1.3)(4.6)" 

Drilling expenditures: 
Semiannual .. -2370.0 .0028 

(3.9X3.1) 
Quarterly . 28.4 .00096

(.5X3.9)

1.284 
(7.9) 
1.491 

(10.2)

1.270 
(5.8) 
1.363 

(7.0)

-0.389 
(2.6) 
-.543 
(3.8)

-.354 
(1.8) 
-.411
(2.2)

-0.0266 
(1.3) 
-.00324
(.7)

-.100 
(-1) 

-.0192
(.8)

0.0589 
(5.4) 

.0101 
(7.6)

.290 
(5.0) 

.0262
(3.6)

0.766 

.840

.766 

.843

the semiannual and quarterly data show surprising 
similarity. Parameter coefficient estimates of the ex­ 
pected profits and the field exhaustion variables which 
are negative and positive, respectively, are inconsis­ 
tent with prior theoretical expectations. The negative 
expected profit coefficient is, in part, due to multicol- 
linearity between 7rt andDt . Because the empirical es­ 
timates were inconsistent with the theoretical restric­ 
tions, both infinite lag forms were rejected.

There seems to be no a priori reason for restricting 
the distributed lag function to an infinite lag distribu­ 
tion. A finite lag model was estimated in which the lag 
weights or coefficients were constrained to lie within a 
polynomial function (Almon, 1965). As discussed ear­ 
lier, behavioral interpretations associated with the 
derivation of such lag models are limited. The form of 
the model used to study wildcat drilling expenditures
is

m
yt = fa + fa 7T,_2 + .2o o>t-iDt -i + ykt + et . (15)

Coefficients c^., are the weights associated with (t-i)th 
period and reflect the temporal effects of a change in 
DM on operators' exploration effort. Assuming that a 
finite lag model is appropriate, it is important to de­ 
termine the appropriate lag length for Dt.t and the de­ 
gree of the polynomial containing the lag weights.

Owing to the presence of serial correlation in the 
data, the application of ordinary least-squares regres­ 
sion procedures in the linear equations would have re­ 
sulted in inefficient parameter estimates. The 
Cochrane-Orcutt procedure, which is described in de­ 
tail in Kmenta (1971, p. 287-289), was used to gen­ 
erate efficient estimates. This procedure amounts to 
the iterative application of ordinary least squares on 
data that have been transformed using an estimate of 
the serial correlation coefficient p. Ordinary least

squares is initially applied to the raw data to obtain an 
estimate of p from the residuals. The data are 
transformed, and least squares is applied to the 
transformed data. A new estimate of p is obtained from 
the residuals of the second regression. If xt is the tth 
observation of the variable, then the transformed vari­ 
able xt is defined by xt =xt-pxt-i- This iterative proce­ 
dure continues until there is no significant change in p.

The consequence of understating or overstating the 
true lag structure is the introduction of a specification 
error (Schmidt and Waud, 1973). If the finite lag model 
weights are interpreted as representing the temporal 
response of operators' search effort to new discoveries, 
then certain restrictions should be placed on the lag 
weights to be consistent with economic theory. For 
example, the weights would be difficult to interpret in 
this fashion if they oscillated between positive and 
negative signs, or if they monotonically increased as 
the lag period became more distant. Given that the 
pattern of the coefficients conforms to certain prior re­ 
strictions, Schmidt and Waud (1973) suggest that ap­ 
propriate lag length be determined after estimating 
the model for a number of different lengths and that 
the final choice be made on the basis of maximizing the 
adjusted coefficient of determination or minimizing the 
standard error of the regression. In this study, the lag 
structure was determined by searching over various 
combinations of lag lengths, and the choice of the final 
form was based on minimizing the standard error of 
the regression equation. In this search, Dt.j represented 
the value of new discoveries found in deposits of at 
least 500,000 barrels. Estimates of coefficients for the 
finite distributed lag models are presented in tables 2 
and 3. For the model based on semianual data, the 
appropriate choice of lag length was five periods7, with 
the coefficient for the fifth period restricted to zero. The 
appropriate lag length for the model based on quar­ 
terly observations was found to be 11 periods with the 
coefficient for the final period restricted to 0. When the 
initial period is also taken into consideration, the em­ 
pirically determined lag lengths for the two models 
(semiannual and quarterly) are consistent. The time 
profile indicated by the lag weights have the shape of 
an inverted "V".

Using the semiannual data, the finite lag models 
were reestimated with Dt redefined to represent the 
total value of new discoveries of deposits greater than 
2.5 million barrels and 5 million barrels. A comparison 
of the estimated models and associated statistics across

7 One problem that arises in determining the appropriate lag length and that has not been 
addressed in the literature is whether the models of varying lag length should be estimated 
using the maximum sample size or using identical sample sizes. For the model specifications 
that were tested, the five-period model estimated from the maximum sample size had the 
minimum standard error of the regression, and the seven-period model had the minimum 
error when alternative models were estimated using identical samples.
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TABLE 2.—Coefficients of polynomial distributed lag models, semiannual observations

[Specifications A and B are based on 46 observations from exploration activity in the Denver basin. Specification C is based on 29 observations from exploration activity in the Powder River 
basin. R*, adjusted coefficient of determination; D.W., Durbin-Watson statistics; S.E., standard error of regression. Numbers in parentheses are absolute values of "t" statistics]

A .

R

C __

A „

B „

c

__ _213.9
(2.2) 

.. .184.6
(1.5) 

——47.5
(5.4)

2098.0
(3.2) 

__ 1577.0
(2.1) 

. __ 932.4
(7.8)

0.0340
(.6) 
.0330

(.6) 
.0054

(2.4)

0.5180
(1.8) 

.5090
(1.7) 

.0410
(1.6)

-0.271
(1.1) 
-.227
(.8) 

-.061
(1.5)

-1.420
(1.0) 
-.976
(.7) 

-1.740
(3.8)

0.279
(1.6) 

.309
(1.6) 

.192
(6.8)

-0.072
(.1) 
.272

(.3) 
.253

(.7)

0.579
(3.5) 

.600
(3.5) 

.302
(11.3)

0.744
(.7) 
.994

(1.0) 
1.271

(3.8)

Wells

(4.1) (4.2) (.4)

(4.1) (4.2) (.2)

(11.2) (2.7) (5.0)

Expenditures

(1.1) (1.2) (2.1) 
1.189 .858 .092

(1.3) (1.4) (.6) 
1.313 .381 -.545

(4.3) (.9) (4.2)

0.005
(.2) 

-.051
(4.9)

0.080
(.5) 

-.571
(4.4)

-0.001
(.2) 

-.006
(1.4)

0.036
(1.5) 

.077
(1.5)

-0.012
(.2) 
.117

(5.1)

-0.257
(.9) 
.936

(3.4)

0.756

.749

.940

0.756

.756

.764

2.3

2.3

2.1

2.6

2.4

2.2

60.5

61.4

13.6

325.8

325.9

160.1

TABLE 3.—Coefficients of polynomial distributed lag models, quar­ 
terly data

[R 2 , coefficient of determination; D.W., Durbin-Watson statistic; S.E., standard error of
regression]

Drilling

ft.
ft -—
Y

We

CUg

fl 2 ....
D.W. —
S.E. —

Coefficients

.... . -112.7
.0096

___ .017
... _ .110
___ .184

.240
- _ . .276
_ - .293
___ .292
- __ .271
___ .232
___ .174
.-— .096
— — .912

— „. 17.45

"t" statistics

2.2 
1.7 

.7 

.3 
2.7 
3.2 
4.0 
4.3 
4.4 
4.4 
4.4 
4.4 
4.4 
4.4

Drilling expenditures
Coefficients

801.0 
.0275 

-.0546 
.126 
.401 
.620 
.781 
.884 
.930 
.919 
.850 
.724 
.540 
.299 

.912 
1.98 

94.89

"t" statistics

2.9 
.9 

1.7 
.4 

1.3 
2.1 
2.4 
2.5 
2.6 
2.6 
2.6 
2.5 
2.5 
2.5

these deposit size categories indicated little difference 
in terms of the overall model form or the explanatory 
power of the model specifications. 8 It might reasonably 
be concluded that operator expectations regarding the 
value of remaining deposits were sustained by the 
quantity of oil found per time period rather than by the 
discoveries of specific size deposits. This finding is con­ 
sistent with results of a similar study carried out for 
the Powder River basin (Attanasi and Drew, 1977). 
Both the profit and field experience exhaustion vari­ 
ables are statistically more significant in the ex­ 
penditures equation than in the drilling equation.

In order to determine if the experience-exhaustion 
index exhibited systematic intertemporal effects, a lag 
structure was imposed on the variable kt , and the equa­ 
tion was reestimated. Results of these specifications 
are presented in table 2. None of the lag coefficients 
was significant in both the drilling and drilling ex­ 
penditures equations, nor was there any improvement 
in the explanatory power of the equations.

8 The adjusted coefficients of determination (R2) for a five-period lag when the minimum 
size classes of deposits are defined as 2.5 million and 5 million barrels are 0.7434 and 0.7455 
for well drilling and 0.7131 and 0.7550 for well drilling expenditures, respectively.

Neither drilling or drilling expenditures are perfect 
measures of exploration effort. Drilling activity, al­ 
though easily interpreted in terms of sampling effort, 
cannot differentiate between the wells drilled under 
varying depths or qualitative degrees of difficulty. Al­ 
though drilling expenditures may more completely re­ 
flect the economic dimension of search effort, they can­ 
not fully represent the temporal behavior because the 
costs of land acquisition and preliminary geophysical 
work are not included. The negative coefficients asso­ 
ciated with the first periods of the distributed lag 
models based on semiannual observations appear to be 
the result of two factors. First, drilling and drilling 
expenditures do not reflect the proper magnitude of 
search effort in the early stages of exploring a prospect. 
Second, adjustments in onshore exploration activity 
would be more readily captured if observations were 
associated with shorter time periods, as shown by the 
model based on quarterly data.

The estimated responses can also be compared to re­ 
sults obtained for exploration activity in the Powder 
River area (specifications C, table 2). In the study of 
that area, the geometric, second-order rational lag and 
finite lag models were also estimated. The model that 
most appropriately described the data was again found 
to be a finite lag distribution. The empirically deter­ 
mined lag length for the Denver basin was five 
semiannual periods with the fifth-period coefficient 
constrained to zero. The appropriate lag structure for 
the Powder River basin was determined to be four 
periods with the coefficient for the fourth period uncon­ 
strained. Major differences between the estimated re­ 
sponse functions are related to the differences in the 
magnitudes of the lag function weights and the 
significance of the field experience-exhaustion vari­ 
able. The lag coefficient on the expenditures equations 
are comparable. However, the values of the lag coeffi­ 
cients for the drilling equation for the Powder River 
basin area are about half of those for the Denver basin.
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This result, in part, reflects the fact that wells were two 
or three times as expensive to drill in the Powder River 
basin. Because there were three exploration plays and 
four different target formations in the Powder River 
basin, the field experience-exhaustion index varied 
widely. The estimated coefficients are consistent with 
this observation and indicate that exploration effort in 
the Powder River basin was significantly influenced by 
the current state of experience or exhaustion. Differ­ 
ences in the estimated relations appear to be reason­ 
ably consistent with differences in economic and 
geologic factors that are reflected in the specific basin's 
exploration history.

In order to compare the implied temporal properties 
of the alternative lag schemes, the time profiles of the 
geometric, second-order rational lag and polynomial 
(finite) distributed lag schemes are presented in figures 
2 and 3. Infinite lag functions consistently overesti-
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FIGURE 2.—Temporal effects of a one-time unit change in the value 
of total discoveries (in thousands of dollars) of at least 500,000 
barrels on wildcat drilling. Specifications of the lag function are 
adjacent to each of the time profiles with L defined as the lag 
operator.
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FIGURE 3.—Temporal effects of a one-time unit change in the value 
of total discoveries (in thousands of dollars) of at least 500,000 
barrels on drilling expenditures. Specifications of the lag function 
are adjacent to each of the time profiles with L defined as the lag 
operator.

mate operators' responses9 because, in the infinite lag 
models, the negative coefficients on the profit variables 
(table 1) inflate the role of the lag function in inducing 
exploration effort.
APPLICATION OF THE DISCOVERY PROCESS MODEL 

PREDICTIONS

A fundamental premise of the approach to field ex­ 
ploration modeling taken here is that operators are 
induced to explore as long as there are high expecta­ 
tions associated with the value of remaining deposits. 
In order to test this premise, a discovery process model 
was used to provide predictions of the undiscovered re­ 
coverable resources as a function of the cumulative 
number of wells drilled. Two discovery process models 
that are very similar in their initial assumptions and 
that have been estimated for the Denver basin are the 
models described in Arps and Roberts (1958) and Drew, 
Schuenemeyer, and Root (1980).

• These comments are relevant if the distributed lag model is interpreted to represent 
operators' temporal response functions to new discoveries.
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Both models proceed from the assumption that the 
probability of finding a deposit in a particular size class 
is proportional to the number of undiscovered deposits 
of that size and proportional to the ratio of the area of 
the typical deposit of the deposit class to the relevant 
area of the basin under exploration. The model of Arps 
and Roberts (1958) specifies that the rate of discovery 
(within a size class of deposits) declines exponentially 
as a function of the number of exploratory holes drilled. 
Alternatively, Drew, Schuenemeyer, and Root (1980) 
use a somewhat different functional form to express 
the decline rate. They are able to estimate objectively 
the discovery efficiencies and relevant basin size, 
whereas Arps and Roberts used prior subjective infor­ 
mation to make these estimates. The discovery process 
model described below is similar to the Arps-Roberts 
model in functional form, although the data used to 
estimate the model are more recent and accurate. Be­ 
cause of its computational simplicity, the model of Arps 
and Roberts was used instead of the model by Drew, 
Schuenemeyer, and Root (1980). Both models appear to 
predict the historical discovery sequence quite well 
(Drew, Schuenemeyer, and Root, 1980). 10

One function of the discovery process model is to pro­ 
vide a framework for predicting future recoverable re­ 
sources as a function of the cumulative number of wells 
drilled. An important component of the model is the 
estimate of the ultimate or total number of deposits 
within the particular size class of deposits, given as 
Fj(w) where i denotes the deposit size class and u is an 
arbitrary large number of wells (perhaps infinite) that 
exhausts or finds all the deposits in the ith size class. 
This estimate positions the extrapolation of the discov­ 
ery decline curve. Given the parameters of the discov­ 
ery process model, historical data may be used to ob­ 
tain an estimate ofFt (u). During the discovery history 
of the basin, estimates of F,(w) may be made and 
operator exploration behavior tested in order to deter­ 
mine (1) if exploration is induced by the expectations 
associated with the remaining deposits and (2) if explo­ 
ration is sustained by expectations attached to specific 
size classes of deposits or the cumulative value of re­ 
maining deposits.

The Arps-Roberts discovery process model has the 
following form:

Fi(w)=Fi(u)(l-e~ 0tW) (16)

where FI (w) is the predicted number of deposits within 
size class i, Ft (u) is the ultimate number of deposits in 
the class, w is the cumulative number of wildcat wells,

10 Root and Schuenemeyer (1980) show the Arps and Roberts (1958) model and the limit 
discovery process model of Drew, Schuenemeyer, and Root (1980) to converge in the limit.

and 0, is a constant that includes the basin size, the 
area of the typical deposit from a given size class of 
deposits, and the exploration efficiency (Arps and 
Roberts, 1958, p. 2563). The basin size B was taken to 
be 5,700,000 acres (approximately 23,068 km2) (Arps 
and Roberts, 1958). The exploration efficiency was as­ 
sumed to be 2 for all size classes of deposits, and the 
area At associated with a deposit size class i was taken 
from Drew, Schuenemeyer, and Root (1980). n More 
specifically for the i th deposit size class,

(17)
B

Although exploration efficiency does vary across size 
classes of deposits, tests of the model using the con­ 
stant 2 for all deposit size classes did not produce any 
appreciable loss in predictive accuracy. Arps and 
Roberts (1958) indicate that predictions of the model 
are equivalent to finding the (mathematical) expected 
value of the number of discoveries to be made with a 
given search effort. Consequently, when this discovery 
process model is used to predict the value of undiscov­ 
ered deposits, the specific forecasts will be referred to 
as "rational" predictions or "rational" expectations.

The "rational" predictions of the number of remain­ 
ing deposits for each size class of deposits was gen­ 
erated in the following manner. An estimate of Ft (u) 
was made by calculating

(18)

where Ft (w) is the number of deposits already found 
with w wells within the ith size class. The number of 
deposits remaining to be found is the difference be­ 
tween Fi(u) and FI(W). By assuming a current price of 
oil and an average size to deposits within each size 
class, the value of oil remaining to be found in the 
basin is predicted after summing the values across size 
classes. The estimation value of remaining deposits is

Deposit size
in 

millions of barrels

Area in acres
per square kilometer

(values in parentheses
are in square kilometers)

0.0 - 0.002 _________-_______________ 2.500 (.010)
.002- .004.._______________________ 3.900 (.016)
.004- .008_________________________ 6.100 (.025)
.008- .016________________-____-__ 11.700 (.047)
.016- .032_________________________ 19.400 (.079)
.032- .064_________________________ 34.000 (.138)
.064- .128—————————— ——— 54.700 (.221)
.128- .256_______________________ 97.300 (.394)
.256- .500 _________________________ 216.960 (.878)
.500- 1.00 -_____-__________-______ 328.320 (1.329)

1.00 - 2.00 _______-_______——_____- 481.920 (1.950)
2.00 - 4.00 _______________________ 697.600 (2.823)
4.00 - 8.00 _______-_______________-1068.800 (4.325)
8.00 -16.00 __________-_____________1324.800 (5.361)

16.00 -32.00 _________________________2752.000 (11.137)
32.00 -64.00 ______________-_______6400.000 (25.900)
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updated each period using both the most recent discov­ 
ery data and the data from previous periods. This 
scheme for generating "rational" expectations can nat­ 
urally be interpreted to suggest that each period 
operators using available information sequentially 
update their estimates of the value of undiscovered de­ 
posits remaining in the basin. Empirical tests that are 
carried out are related to how closely levels of explora­ 
tion effort correspond to the predicted value of remain­ 
ing deposits and whether exploration is correlated 
more with predictions for specific size classes of depos­ 
its or with the cumulative value of deposits remaining. 

The models explaining exploration behavior were 
specified to include the lagged profit term and the pre­ 
dicted value of undiscovered deposits. Because the dis­ 
covery process model implicitly takes into considera­ 
tion the effects of physical exhaustion, the variable kt 
was omitted from the model specifications. Estimates 
of Fi(u) can be quite erratic when there are relatively 
few wildcat wells drilled in the basin. Consequently, 
the data set that was used included the period from the 
third quarter in 1951 through 1973. Again, the 
Cochrane-Orcutt procedure was applied to handle 
problems of autocorrelation (Kmenta, 1971). The esti­ 
mated equations and the statistics describing the qual­ 
ity of the estimates are presented in the following 
equations: 
for drilling,

yw = 14.160+ 0.00934^_2 + 0.10172 x? (19) 
(0.4) (1.4) (3.3)

#2=0.885 S.E.=20.72 Durbin-Watson statistic = 
1.45;

for drilling expenditures,

ye = -49.010+ 0.02559^^ t + 0.58802 x? (20) 
(0.4) (1.7) (3.6) (3.6)

#2=0.898 S.E. = 104.36 Durbin-Watson statistic = 
1.72.

In these equations R 2 is the adjusted coefficient of de­ 
termination, S. E. is the standard error of the regres­ 
sion, and the numbers in parentheses below the coeffi­ 
cients are the associated "t" statistics. The variable xf 
represents the total value (across all classes) of depos­ 
its remaining to be found in the basin. Regressions 
using particular size classes of deposits for the variable 
associated with operators' expectations were also car­ 
ried out. Although they produced slight differences in 
explanatory power, the improvements were not 
significant. From these results it can be concluded that, 
with reference to exploration, operators appear to react

to the total perceived economic value of undiscovered 
deposits rather than to the presence of a specific size of 
deposits.

Predictions generated by the discovery process model 
could also be used as arguments in a distributed lag 
model. This use might be rationalized by assuming 
that the current estimates of the value of undiscovered 
deposits to which operators react are weighted av­ 
erages of previous estimates. Several model 
specifications of this type have been estimated. How­ 
ever, the results indicated no substantive improvement 
in the statistics describing the quality of the models. In 
some cases, the signs of the lag coefficients were diffi­ 
cult to rationalize. Consequently, the model estimates 
are not presented or discussed in the subsequent 
analysis.

The qualitative statistics that describe the fits of .the 
ad hoc distributed lag model and the model basedf on 
the predictions of the discovery process model are com­ 
parable. It would be of particular interest to determine 
if the predictive performances of the models are simi­ 
lar. For a situation of equal reliability, the use of the 
simpler model is to be preferred since it has a some­ 
what less ad hoc foundation and appears to use availa­ 
ble observations for parameterization efficiently. The 
motivation for comparing the performance of the 
models beyond their respective qualitative statistics is 
to identify systematic relative weaknesses. Procedures 
for the comparative evaluation of econometric models 
have only recently been discussed in detail in the liter­ 
ature (Dhrymes and others, 1972). During the process 
of constructing the present models, several evaluation 
criteria have already been applied. These criteria con­ 
cern how well the model structure conforms to accepted 
economic theory and if the estimates are theoretically 
consistent. Other techniques compare the pattern of 
the model predictions with the historical data. One 
method is to examine whether the model predicts the 
turning points that actually occur in the dependent 
variable. In this regard, the performance of both 
models was relatively poor. Generally, the predicted 
turning points were lagged one period from the histori­ 
cal turning points. For the well-drilling equations, 
both models predicted only 2 of the 27 turning points 
correctly; for the expenditures equations, the "ra­ 
tional" model predicted 5 of 26, and the distributed lag 
model predicted 3 of 26 correctly. One explanation for 
the relatively large number of turning points in the 
data is that the data appear to contain a residual sea­ 
sonal variation that was not removed.

Another technique frequently used in model evalua­ 
tion is to examine the pattern in the residuals. Figures 
4 and 5 plot the residuals of the two models over a 
common sample period. The plotted residuals do not
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FIGURE 4.—Residuals for well-drilling models.

indicate systematic variation in either figure or for 
either model specification. The presence of a systematic 
component in the residuals would indicate that the 
model was misspecified. That is, if a significant vari­ 
able was omitted from the specification, then a pattern 
in the residuals would correspond to systematic varia­ 
tions of the omitted variable. The most extreme re­ 
siduals are accounted for by the "rational" model. Al­ 
though the residuals vary widely for drilling from the 
third quarter of 1968 through 1970, the residuals for 
the drilling expenditure models indicate less erratic 
behavior.

Economic theory rarely specifies the functional 
forms that are used in applied econometric modeling. 
Consequently, in the process of model selection, several 
alternative functional forms are generally examined, 
and the final form is chosen on the basis of goodness of 
fit. This procedure is not entirely satisfactory, because 
specification errors resulting from incorrect or omitted 
variables are still possible. Specification errors may 
lead to biased estimates and predictions. A technique 
used to detect specification errors is to test for stability 
or structural changes in the model parameters during 
the original sample period (Jorgenson and others, 
1970; Dhrymes and others, 1972). In particular, the 
full data sample is split into two subsamples or periods,

and the models are reestimated. The resulting parame­ 
ters are tested to determine if statistically significant 
changes have taken place in their values.

The procedure used in detecting structural changes 
is the following: Suppose Q 2 is the sum of squared re­ 
siduals associated with each subsample. Further, letQ x 
be the sum of squared residuals of the regression based 
on the pooled data. Under the hypothesis that the sets 
of regressors are equal for the two subperiods and the 
pooled sample, the test statistic is distributed accord­ 
ing to theF distribution and is calculated (Chow, 1960)
as

Q 2/(m+n-2kY
(21)

with degrees of freedom (k,m+n—2k). The variables m 
and n are the number of observations in each subsam­ 
ple, and k is the number of parameters that must be 
estimated in each model.

For the distributed lag models, the two subperiods 
were from the fourth quarter of 1952 to the first quar­ 
ter of 1962 and from the second quarter of 1962 to the 
fourth quarter of 1973. The sample periods used for 
tests of the "rational" model were from the fourth quar­ 
ter of 1953 to the third quarter of 1962 and from the
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FIGURE 5.—Residuals for well-drilling expenditures models.

fourth quarter of 1962 to the fourth quarter of 1973. 
The level of type I error was set at 0.05; that is, one 
could expect to reject the null hypothesis about 1 time 
in 20 even if it were true. Rejection of the null 
hypothesis would indicate temporal parameter 
changes that might be the result of model specification 
error. For the distributed lag model the "F" statistics 
were 1.34 and 0.58 for the drilling and drilling ex­ 
penditures equations, respectively. The model based on 
the predictions of the discovery process model had F 
statistics of 1.57 and 0.74 for the drilling and drilling 
expenditures equations, respectively. Thus there were 
no instances when the test statistic exceeded the cor­ 
responding critical level and the null hypothesis was 
not rejected, and the results of the tests for structural 
change provided no evidence that specification errors 
might be present in either set of models.

In conclusion, the test results comparing the distrib­ 
uted lag model and the model based upon predictions 
from the discovery process models indicated little dif­ 
ference in the potential predictive performance of the 
models. This finding is significant for three reasons.

First, it appears that the predictions of the discovery 
process model contain most, if not all, of the informa­ 
tion included in the distributed lag functions of Dt and 
the experience-exhaustion variable kt . Because of its 
relative simplicity, it may be more appropriate to use 
this model instead of the distributed lag model in 
applied situations. Second, if the discovery process 
model efficiently uses available information to gen­ 
erate predictions, then the specific distributed lag 
proxy used here does seem to capture operator expecta­ 
tions. Third, the reasonably high explanatory power of 
the "rational" model appears to indicate that the 
operators are using information contained in the 
discovery history of the basin efficiently and operating 
in a fashion consistent with these predictions.

SUPPLY OF RESERVES

The behavioral drilling models presented in the pre­ 
ceding sections appear adequate to explain the histori­ 
cal pattern of operator behavior in the basin. As such, 
they served as a basis for making inferences concern­ 
ing the determinants of firm behavior. The estimated
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behavioral models may also be applied in conjunction 
with the discovery process models to forecast the tem­ 
poral pattern of new reserves, given certain assump­ 
tions about crude oil prices and drilling costs. The 
usefulness of forecasts of future reserves from undis­ 
covered deposits is obvious. Furthermore, the genera­ 
tion of the forecasts by the analytical model allows the 
predictions to be conditioned on prices, well costs, and 
the current state of physical exhaustion. However, the 
accuracy of the forecasts is generally constrained by 
the nature of the models and the relevant behavioral 
and technical relations.

The estimated discovery process model mechanically 
provides predictions of the number of deposits within 
each size class as a function of the cumulative number 
of wildcat wells. To obtain a prediction of the reserves 
found for a given increment in wells, the field size (in 
barrels of oil) is multiplied by the incremental value in 
the predicted number of deposits. By linking the dis­ 
covery process model to the behavioral drilling model, 
the predicted number of wildcat wells (per unit time) 
can be used to generate a forecast of the amount and 
value of reserves forthcoming. Because of the non­ 
linear nature of the discovery process model, the link­ 
ing of it and the behavioral drilling model must be 
relatively simple. Consequently, the integrated model 
is recursive in nature.

Although the discovery process model is independent 
of time, the behavioral drilling model is not. The drill­ 
ing model was estimated with quarterly data, and con­ 
sequently forecasts of the number of wildcat wells are 
also on a quarterly basis. Moreover, the model is 
specified so as to describe shortrun operator decisions. 
In general, the ability of econometric models to provide 
accurate forecasts deteriorates rapidly as the number 
of periods that the forecasts are made into the future 
increases. The extent of the deterioration can, to some 
degree, be determined by carrying out simulation ex­ 
periments with the integrated equation system. In par­ 
ticular, these tests attempt to determine how rapidly 
the accuracy of the forecasts deteriorate, the robust­ 
ness of the predictions of one endogenous variable 
when errors are in the other endogenous variable, and 
whether forecast errors are compensating or noncom- 
pensating as the results from individual time periods 
were aggregated.

A measure used to determine the quality of the inte­ 
grated model's forecasting performance was the root- 
mean-square (RMS) prediction error (Thiel, 1966). It is 
defined as

/Tn
RMS= A / n 2 (Pi-Atf, 

V i=l
(22)

where Ai is the actual value of the predicted variable 
and Pi is the prediction. Also used as measures of per­ 
formance were the mean error (over several forecast 
periods) and the ratio of the RMS prediction error to 
the actual mean value of the variable predicted.

The integrated model is specified as a recursive equ­ 
ation system. Because of its simplicity, the "rational" 
well drilling specification was used rather than the dis­ 
tributed lag model. Variables that are endogenous or 
determined within the system are

yt = number of wells drilled in period t and
Rt = reserves discovered in period t. 

Variables that are taken as given or determined 
exogenously are

cwt = cost per well in period t,
pt = price of crude oil, and
U0 — the initial value of undiscovered deposits. 

Among the predetermined variables that are taken as 
given are the initial values of the lagged endogenous 
variable yt-i and Tft.2 . The discovery success ratio is not 
predicted, and consequently the profit variable was re­ 
defined to have the following form:

--CWt-2, (23)

where Rt ,pt, cwt , and yt were defined as above. In the 
original estimation of the "rational" model, Ft (u) was 
reestimated each period as new information became 
available or as discoveries were made. Reestimation of 
Fi(u) each period for the integrated model would result 
only in the initialized value of the variable. Therefore, 
the final empirical estimates of the ultimate numbers 
of deposits for each size class were used. Because of the 
redefinition of the profit variable and the use of the 
final empirical estimates forFj(u), the "rational" well 
drilling equation was reestimated. The new equation is 
of the following form:

= 8.386+0.06339^-2+ 0.10358 
(0.2) (1.7) (3.0)

(24)

#2 =0.881 S.E.=21.1 Durbin-Watson statistic = 1.53,

where the numbers in parentheses below the model 
coefficients are the "£" statistics, R 2 is the adjusted co­ 
efficient of determination, and S. E. is the standard 
error of the regression equation. Using the Cochrane- 
Orcutt procedure to handle serial correlation, the 
first-order correlation coefficient was estimated to be 
0.814. The predictive form of equation (24) (Kmenta, 
1971) is
y,=0.81ty«_ 1 +(l-0.814)8.386+0.06339(ir,_2 -0.814w:<_3) 

+0.10358(xf-0.814xf-i). (25)
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The predicted reserves found per time period, Rt , is 
calculated by taking the cumulative number of wells to 
period t-1, calculating the predicted (total) reserves, 
adding the number of wells drilled in period t to the 
cumulative well count, recalculating the predicted (to­ 
tal) reserves, and taking the difference between two 
total reserve predictions. The value of undiscovered 
deposits at the beginning of time t+l was forecast by 
taking the difference between the predicted amount of 
discovered reserves at t and the sum of Ft (u) across 
classes and multiplying the result by the crude oil price 
at the time. Predictions of yt , Rt-i, and x*t+i are em­ 
ployed in (23) and (25) to generate the predicted 
number of wells for period yt+ i, which in turn is used to 
predict Rt +i.

The historical period from the first quarter of 1960 to 
the fourth quarter of 1968 served as the base period for 
examining the integrated model's forecasting ability. 
This period was chosen because the estimated ultimate 
number of deposits in each size class had stabilized 
(Drew and others, 1980). The test period was cut off at 
the end of 1968 in order not to include the perod when 
the Union Pacific Railroad acreage began to be drilled. 
We believed that the initiation of drilling on the new 
acreage represented an entirely exogenous influence, 
and the model could not be expected to reproduce it.

In order to determine how the accuracy of the fore­ 
casts was affected by the length of the forecast period, 
that is, how far ahead forecasts should be made, three 
sets of simulations were generated for the 9-year 
period. These include forecasts of 4, 8, and 12 periods 
(quarters) ahead. For example, during the 36 periods 
there were nine sets of 4-period forecasts. Using 
8-period forecasts, four sets were generated, and for the 
12-period forecasts, three sets were generated. Quar­ 
terly observations, particularly for new discoveries, 
have substantial stochastic components. Therefore, it 
is also of interest to determine if prediction errors dur­ 
ing the forecast period offset each other when results 
for the time periods are aggregated.

Results of the experiments are presented in table 4. 
The table indicates the RMS prediction error, the mean 
(actual-predicted) prediction errors over the forecast 
time period, and the mean value of the actual variable 
that is being forecasted. The pattern of the prediction 
errors for wells indicates the degree by which 
lengthening the forecast period increases the RMS 
prediction errors and mean prediction error. The over­ 
all mean values of the RMS to the actual variable 
value are 0.141, 0.240, and 0.257, and the ratios of the 
value of mean period prediction error to the mean ac­ 
tual values are 0.033, 0.162, and 0.189 for the 4-, 8-, 
and 12-period forecasts, respectively. The obvious ef­ 
fect of increasing the forecast period is the accumula-

TABLE 4.—Forecast performance of integrated system

Dependent 
Variable

Forecast 
length' Period

A 1 __ .
2 __ .
3 ... ...
4 . .
5 .
6
7 ......
8 - .....
9 _ ...

Mean Values

B 1 ..
2 ... ...
3 ......
4 _ ...

Mean Values

C 1 .
2 ......
3 ... ...

Mean Values

RMS 
errors2

7.551 
12.795 
13.183 
8.509 
5.227 

20.195 
12.703 
9.783 

19.146
12.121

22.953 
19.434 
13.424 
28.126
20.984

20.438 
15.643 
29.878
21.986

Wells
Mean 
errors3

3.589 
-9.213 

.868 
5.915 
3.679 

14.769 
9.698 
6.882 

-10.847
2.816

14.986 
12.399 
5.803 

23.671
14.215

13.099 
11.746 
23.761
16.202

Reserves
Actual RMS Mean Actual 
mean errors errors mean

109.250 
92.250 

110.000 
90.500 
86.250 
89.250 
68.750 
54.250 
70.750
85.694

100.750 
100.250 
87.750 
61.500
87.563

103.833 
88.667 
64.583
85.694

2.103 
3.183 
3.036 
2.969 
1.928 
1.927 
3.381 
1.298 
.585

2.268

2.729 
2.987 
1.915 
2.549
2.545

2.860 
2.345 
2.102
2.436

0.786 
-.025 
-.573 

.277 

.330 
1.346 
-.519 
-.526 
-.458

.071

0.776 
.059 
.805 

-.275
.341

0.341 
.753 

-.141
.318

3.763 
3.161 
4.111 
2.555 
2.096 
1.142 
2.374 
2.069 
1.837
2.567

3.462 
3.333 
1.619 
2.221
2.659

3.678 
1.931 
2.093
2.567

'Forecast lengths A, B, and C are 4, 8, and 12 quarters, respectively. 

'Root-mean-square value is given by ( N 2 (P, - A( )2)8-5, where Pt is the pre­ 

dicted value and A t is the actual value.
'Mean error is based on actual minus predicted value.

tion of prediction errors. It does not appear that the 
percentage errors increase linearly with the forecast 
period. To some degree, it appears that errors will be 
offsetting if the forecast period is taken to be suffi­ 
ciently short, as evidenced by the relatively low mean 
error to actual value of 0.033 for the 4-period forecast 
simulation. As the forecast period is increased, the 
number of wells predicted appears to be systematically 
overestimated.

Results for the predicted amount of reserves found in 
new deposits are also presented in table 4. The discov­ 
ery process model, used to predict the number of depo­ 
sits and reserves forthcoming, produces relatively 
smooth estimates of forthcoming reserves. However, 
the actual number and sizes of new deposits, particu­ 
larly for as short a period as a quarter, are highly erra­ 
tic in nature. As a result, individual prediction errors 
as measured by the RMS prediction errors can be ex­ 
pected to be relatively large. However, if the model is 
operating reasonably well, in aggregating the predic­ 
tions over time, errors will be compensating so that the 
mean prediction error should be relatively small. Re­ 
sults of the simulations appear to be consistent with 
this conjecture. The RMS prediction errors are very 
large, even for the set for which only 4-period forecasts 
were made. However, the mean prediction errors taken 
over the entire period are relatively small. The ratios 
of the mean prediction error values to the actual mean 
values are 0.028, 0.128, and 0.124 for the simulations 
based on the 4-, 8-, and 12-period forecasts, re­ 
spectively. Individual errors in predicting forthcoming
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reserves tend to offset each other as the errors are 
aggregated over time. The supply of reserves for in­ 
crements in the drilling rate are too random to be pre­ 
dicted on a quarterly basis. Aggregation of quarterly 
forecasts to obtain annual values results in reasonably 
accurate predictions. The positive values of the mean 
forecast error for the 8- and 12-period simulation ex­ 
periments does not necessarily mean that forecasts of 
the discovery process models are generally biased. The 
positive mean prediction error is probably the result of 
the overestimates for the number of predicted wells 
drilled as discussed earlier.

In summary, the prediction errors of the behavioral 
well-drilling model seem to be biased positively. How­ 
ever, the magnitude of the RMS and mean errors are 
quite comparable to the performance of well-drilling 
equations reported in other studies (MacAvoy and Pin- 
dyck, 1975) for similar forecast periods, that is, 4-8 
periods ahead. The relatively high RMS errors for the 
additions to reserves appear to be more the result of the 
erratic or stochastic nature of the historical arrival of 
discoveries than systematic bias in the discovery pro­ 
cess model. The relatively small mean prediction 
errors, particularly for the 4-period forecasts, indicate 
that if the quarterly forecasts of additions to reserves 
were aggregated, perhaps on an annual basis, and 
compared to the historical realizations, the RMS pre­ 
diction errors would also be much smaller. The rela­ 
tively small mean prediction error associated with the 
additions to reserves seems to suggest that the fore­ 
casts are reasonably robust even though there were 
errors in predictions of the number of wells to be 
drilled.

Although the linking of the discovery process model 
with the behavioral well-drilling model produced an 
analytical means of translating the forecasts of re­ 
serves per unit exploration effort, that is, wells drilled 
to reserves per unit time, several limitations of the 
analysis should be kept in mind. First, the economic 
model was specified to describe operator field decisions 
that are short term in nature. That is, the nature of 
decisions that are modeled are marginal adjustments 
in the rate of exploration rather than decisions to enter 
or exit a geologic basin. Second, because of the short- 
run nature of the models, it would be misleading to 
attempt to draw general conclusions about the effects 
of a general price change on drilling activity within the 
basin. That is, a general price change would induce 
some longrun adjustments to take place in the firm's 
internal allocation of resources across several regions. 
The type of price change that the behavioral well- 
drilling model might more appropriately capture cor­ 
responds to a change in the relative price of oil, for 
instance, the price of oil found in the Denver basin as

opposed to another basin. In order to predict the effects 
of a general change in the price of oil on drilling behav­ 
ior for a particular basin, the behavioral well-drilling 
equation should be respecified to reflect the firm's long- 
run decisions and include a variable that would denote 
the firm's alternative exploration opportunities in 
other geologic basins or its alternative opportunities 
for obtaining additional reserves.

CONCLUSIONS

The purpose of this study was to examine operator 
exploration behavior at the field level. In the first part 
of the study an empirical model was specified and esti­ 
mated. Distributed lag proxy variables were used to 
model operator expectations associated with the distri­ 
bution of deposits remaining to be found in the basin. 
The estimated drilling models permitted inferences to 
be made about operator field behavior. First, if the 
form of the distributed lag function is interpreted to 
represent the operators' responses to new discoveries, 
then the nature of function is important. The appropri­ 
ate form of the function was a finite polynomial lag 
function with an inverted "V" shape; that is, the effects 
of new discoveries increased for several periods and 
then diminished rapidly to 0 within 2Mi years after dis­ 
covery of the deposit. The independent variable used in 
the distributed lag model was the total value of depos­ 
its found in a given period with a minimum size of 
500,000 barrels. Second, tests using alternative 
minimum size classes of deposits, that is, 2.5 million 
and 5 million barrels, in the distributed lag function 
produced no improvements in the fits. This result im­ 
plies that, once an exploration play is underway, 
operator field expectations are sustained by the quan­ 
tity of oil found per time period rather than by the 
discovery of specific size deposits. Comparison of these 
results and the regression coefficients showed them to 
be quite consistent with the results of a similar previ­ 
ous study based on the discovery history of the Powder 
River basin (Attanasi and Drew, 1977).

In the second part of the study, the discovery process 
model was applied to generate sequential predictions of 
the value of undiscovered deposits, which were used in 
the behavioral well-drilling model in place of the dis­ 
tributed lag operator-expectations proxy variable. The 
discovery process model efficiently uses information 
contained in the historical time series to estimate the 
future discoverie's. Consequently, it was assumed that 
such predictions would closely correspond to "rational" 
expectations where "rational" is used in the sense that 
all available information in the historical data is used 
efficiently in the estimation process. Using the predic­ 
tions from the discovery process model as the unob- 
servable expectations variable associated with the
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value of undiscovered deposits, the behavioral well- 
drilling equation was reestimated. The estimated "ra­ 
tional" model explained historical operator behavior 
well. This result seemed to indicate that operators, on 
the average, were efficiently using information con­ 
tained in the discovery history of the basin and were 
behaving in a fashion consistent with these predic­ 
tions. Comparison of the performance of the distributed 
lag model with that of the "rational" model indicated 
little differences in the predictive performance of the 
two models. The predictions of the discovery process 
model, used as "rational" expectations, appear to con­ 
tain most if not all of the information included in the 
distributed lag functions and experience-exhaustion 
variable.

In the final section of the study, the behavioral 
well-drilling model and the discovery process model 
were integrated into a recursive equation system. The 
purpose of linking the models was to gain the ability to 
forecast additions to reserves in the time domain or on 
a unit time basis. The forecast performance of the inte­ 
grated system was tested by examining the accuracy 
for various lengths of forecast periods. As might be 
expected, as the number of forecast periods increased, 
the accuracy of the forecasts deteriorated. However, 
the level of accuracy was still comparable to levels at­ 
tained in other studies. Because of the stochastic na­ 
ture of the discovery process, aggregation of quarterly 
predictions of additions to reserves to annual values 
tended to increase accuracy as measured by the mean 
error of prediction. The accuracy of the aggregated 
predictions appeared to be reasonably robust to the 
presence of prediction errors in the behavioral well- 
drilling equations. Finally, the integrated model pro­ 
vides for the first time a means of explicity incorporat­ 
ing physical and economic exhaustion in the generated 
profit predictions and predictions of the value of re­ 
maining deposits into a behavioral model that de­ 
scribes the exploration effort (wells and expenditures) 
of operators.
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